Defense Innovation Board
Ten Commandments of Software

Executive Summary

The Department of Defense (DoD) must be able to develop and deploy software as fast or faster
than its adversaries are able to change tactics, building on commercially available tools and
technologies. Recognizing that “software” can range from off-the-shelf, non-customized software
to highly-specialized, embedded software running on custom hardware, it is critical that the right
tools and methods be applied for each type. In this context we offer the following ten
‘commandments” of software acquisition for the DoD:

1.

2.

10.

Make computing, storage, and bandwidth abundant to DoD developers and users.

All software procurement programs should start small, be iterative, and build on success
— or be terminated quickly.

The acquisition process for software must support the full, iterative life cycle of software.
Adopt a DevSecOps culture for software systems.

Automate testing of software to enable critical updates to be deployed in days to weeks,
not months or years.

Every purpose-built DoD software system should include source code as a deliverable.

Every DoD system that includes software should have a local team of DoD software
experts who are capable of modifying or extending the software through source code or
APl access.

Only run operating systems that are receiving (and utilizing) regular security updates for
newly discovered security vulnerabilities.

Security should be a first-order consideration in design and deployment of software, and
data should always be encrypted unless it is part of an active computation.

All data generated by DoD systems - in development and deployment - should be stored,
mined, and made available for machine learning.

SWAP Study Final Release, 3 May 2019 S76

Motivation and Scope

The latest industry best practices for developing, fielding, and sustaining software applications
and information technology (IT) systems are substantially outpacing the US government’'s
industrial-era planning, programming, budgeting, and execution system (PPBES) methods. In the
commercial software industry, there is no clear delineation between development, procurement,
and sustainment; rather it is a continuous cycle that changes rapidly. New functionality is made
available and deployed to users in months to weeks (and even days, for truly critical updates).
Existing government appropriation structures make it difficult to implement this approach in the
DoD.

Currently available commercial technology for rapidly deploying new advances in software,
electronics, networking, and other areas means that our adversaries can rapidly develop new
tactics that will be used against us. The only defense is to get inside our adversaries’ observe,
orient, decide, and act (OODA) loop, which requires the ability to rapidly develop and deploy
software into operational environments. For software that is used as part of operations, whether
it is run in the Pentagon or in the field, this will require new methods for (automated) testing and
rapid deployment of updates, patches, and new functionality.

In this document, we provide ten “commandments” (principles) for DoD software that provide an
approach to development that builds on the lessons learned in the software industry and enables
rapid deployment of software into military operations. These principles are not universal and may
not apply in all situations, but they provide a framework for improving the use of software in DoD
operations going forward that we believe will provide substantial improvements compared to the
current state of practice.

Software Types

Not all software is alike and different types of software require different approaches for
procurement and sustainment. It is important to avoid a “one size fits all” approach to weapons
systems. Acquisition practices for hardware are almost never right for software: they are too slow,
too expensive, and too focused on enterprise-wide uniformity instead of local customization.
Similarly, the process for obtaining software to manage travel is different than what is required to
manage the software on an F-35. We suggest a taxonomy with four types of software requiring
four different approaches:

e A: commercial (“off-the-shelf”) software with no DoD-specific customization required;
e B: commercial software with DoD-specific customization needed;
e C: custom software running on commodity hardware (in data centers or in the field);

e D: custom software running on custom hardware (e.g., embedded software).

While many of the principles below apply to all DoD software, some are relevant only for specific
types, as we indicate at the end of each description.

SWAP Study Final Release, 3 May 2019 S77

https://en.wikipedia.org/wiki/OODA_loop

To amplify at the extremes of this continuum of software types, we note especially the tendency
of large organizations to believe their needs are unique when it comes to software of Type A.
Business processes, financial, human resources, accounting and other “enterprise” applications
in DoD are generally not more complicated nor significantly larger in scale than those in the private
sector. Commercial software, unmodified, can be deployed in nearly all circumstances. At the
opposite end of the spectrum we recognize the highly coupled nature of real-time, mission-critical,
embedded software with its customized hardware, denoted in Type D. Examples here include
primary avionics or engine control, or target tracking in shipboard radar systems, where
requirements such as safety, target discrimination and fundamental timing considerations
demand that extensive formal analysis, test, validation and verification activities be carried out.

The DIB’s Ten Commandments of Software

Commandment #1. Make computing, storage, and bandwidth abundant to DoD developers
and users, especially in operational systems. Effective use of software requires that sufficient
resources are available for computing, storage, and communications. The DoD should adopt a
strategy for rapidly transitioning DoD IT to current industry standards such as cloud computing,
distributed databases, ubiquitous access to modernized wireless systems (leveraging commercial
standards), abundant computing power and bandwidth that is made available as a platform,
integration of mobile technologies, and the development of a DoD platform for downloading
applications. Unit cost of IT infrastructure and services should be used as a metric in track
improvements. An important metric of abundance must be the ability to actually deliver code, and
DoD must be able to count the number of programmers within an organization and make sure
that the balance of coders to managers is correct [All types]

Commandment #2. All software procurement programs should start small, be iterative, and
build on success — or be terminated quickly. Good software development provides value to
the customer quickly, based on working with users starting on day one and defining success
based on customer value, not creation of code. Large software programs are doomed to fail
because of the rigidity, process, competition protests, and bureaucracy that accompany them
(typically starting with the Joint Capabilities Integration Development System (JCIDS) process).
The separation of software development into research, development, test and evaluation
(RDT&E), procurement, and operations & maintenance (O&M) appropriations (colors of money)
— and the use of cost-based triggers within each acquisition category (ACAT) — causes delays
and places artificial limitations on the program management office’s (PMQO’s) ability to quickly
meet the changing needs, resulting in increased lifetime cost of software and slower deployment.
Modern (“agile”) approaches used in commercial software development will result in faster
deployment and significant cost savings. [All types, especially B and C]

Commandment #3. The acquisition process for software must support the full, iterative life
cycle of software. Software does not age well. It must be constantly maintained and updated,
ideally in an automated fashion. The PPBES process is nominally a two (2) year timeline to
request and receive funding, with initial planning occurring five (5) years prior to actual receipt,
and funding must be requested by intent of use (RDT&E, procurement, and O&M). But this fiscal
separation does not match the process of software development, where all creation of code is

SWAP Study Final Release, 3 May 2019 S78

“‘development,” whether it falls within the fiscal law definition or not. As an alternative, the DoD
should make use of “level of effort” (or capacity) constructs to allow continuous development and
testing. Assume that low criticality software that is routinely used will require 10% of the
development cost to maintain (per year) and more critical software will likely require more
resources. This funding must be planned for at the time of initial development, not as an annual
allocation that could be interrupted. Enhanced software capability should never be considered
“ahead of need.” [All types]

Commandment #4. Adopt a DevSecOps culture for software systems. “DevOps” represents
the integration of software development and software operations, along with the tools and culture
that support rapid prototyping and deployment, early engagement with the end user, automation
and monitoring of software, and psychological safety (e.g., blameless reviews). “DevSecOps”
adds the integration of security at all stages of development and deployment, which is essential
for DoD applications. These techniques should be adopted by the DoD, with appropriate tuning
of approaches used by the community for mission-critical, national security applications. Open
source software should be used when possible to speed development and deployment, and
leverage the work of others. Waterfall development approaches (e.g., DoD-STD-2167A) should
be banned and replaced with true, commercial agile processes. Thinking of software
“procurement” and “sustainment” separately is also a problem: software is never “finished” but
must be constantly updated to maintain capability, address ongoing security issues and potentially
add or increase performance (see Commandment #3). [Type C; Type D when tied to iterative
hardware development and deployment methodologies]

Commandment #5. Automate configuration, testing, and deployment of software to enable
critical updates to be deployed in days to weeks, not months or years. While operational
test and evaluation (OT&E) is useful, it must not be the pacing item for deployment of software,
especially upgrades to existing software. Automated configuration management, unit testing,
software/hardware-in-the-loop (SIL/HIL) testing, continuous integration, A/B testing, usage and
issues tracking, and other modern tools of software development should be used to provide high
confidence in software correctness and enable rapid, push deployment of patches, upgrades, and
apps. Make use of modern software development tool sets that support these processes (and
other types of development stack automation and software instrumentation) to enable code
optimization and refactoring. [All types]

Commandment #6. Every purpose-built DoD software system should include source code
as a deliverable. DoD should have the rights to and be able to modify (DoD-specific) code when
new conditions and features arise. Providing source code will also allow the DoD to perform
detailed (and automated) evaluation of software correctness, security, and performance, enabling
more rapid deployment of both initial software releases and (most importantly) upgrades (patches
and enhancements). [Types C, D]

Commandment #7. Every DoD system that includes software should have a local team of
DoD software experts who are able to modify or extend the software through source code
or APl access. Modern weapons systems are software-driven and utilization of those systems in
a rapidly changing environment will require that the system (software) be customizable by the

SWAP Study Final Release, 3 May 2019 S79

https://en.m.wikipedia.org/wiki/DOD-STD-2167A

user. In order to do this, all fielded DoD systems that include software must also have a local team
(responsible to the operational unit) that has the skills and permission to modify and extend the
software through either source code (Commandment #6) or application programming interface
(API) access. Local experts should have “reachback” capabilities to larger team and the ability to
pull new features into their code (and generate pull requests for features that they add which
should go back into the main codebase [repository]). [Types B, C, sometimes D]

Commandment #8. Only run modern operating systems that are receiving (and utilizing)
regular security updates for newly discovered security vulnerabilities. Outdated operating
systems are a major vulnerability and the DoD should assume that any computer running such a
system will eventually be compromised. Standard practice in industry is that security patches
should be applied within 48 hours of release, though this is probably too big a window for defense
systems. Treat software vulnerabilities like perimeter defense vulnerabilities: if there is a hole in
your perimeter and people are getting in, you need to patch the hole quickly and effectively. [Types
A, B, C]

Commandment #9. Security should be a first-order consideration in design and
deployment of software, and data should always be encrypted unless it is part of an active
computation. All data should be encrypted, whether in motion (across a network) or at rest
(memory, disk, cloud, etc). A possible exception is real-time data that is part of an embedded
control system and is being sent across an internal bus/network that is not accessible from outside
that network. [Types A, B, C and D when possible]

Commandment #10. All data generated by DoD systems — in development and operations
— should be stored, mined, and made available for machine learning. Create a new
architecture to collect, share, and analyze data that can be mined for patterns that humans cannot
perceive. Utilize data to enable better decision-making in all facets of the Department, providing
significant advantages that adversaries cannot anticipate. Forge culture of data
collection/analysis to meet the demands of a software-centric combat environment. Such data
collection and analysis can be done without compromising security: in fact, a comprehensive
understanding of the data the DoD collects can improve security. [All types]

SWAP Study Final Release, 3 May 2019 S80

Supporting Thoughts and Recommendations

In addition to the ten principles given above, we offer the following thoughts and recommendations
for how the DoD can best take advantage of software as a force multiplier. While not directly
related to software, they are enablers for adopting the principles required for rapid development
and deployment of software.

Establish Computer Science as a DoD core competency. Do not rely solely on contractors as
the only source of coding capability for DoD systems. Instead, the DoD should recruit, train, and
retain internal capability for software development, including by service members, and maintain
this as a separate career track (like DoD doctors, lawyers, and musicians). This should
complement work done by civilians and contractors. Create new and expand existing programs
to attract promising civilian and military science, technology, engineering and math (STEM) talent.
Reach into new demographic pools of people who are interested in the work DoD does but
otherwise would not be aware of DoD opportunities. Be able to count the number of programmers
within an organization and make sure that the balance of developers to managers is correct

Use commercial process and software to adopt and implement standard business
practices within the Services. Modern enterprise-scale software has been optimized to allow
business to operate efficiently. The DoD should take advantage of these systems by adopting its
internal (non-warfighter specific) business processes to match industry standards, which are
implemented in cost-efficient, user-friendly software and software as a service [SaaS] tools.
Rather than adopt a single approach across the entire DoD, the individual Services should be
allowed to implement complementary approaches (with appropriate interoperability).

Move to a model of continuous hardware refresh in which computers are treated as a
consumable with a 2-3 year lifetime. The current approach — in which technology refreshes
take 8-10 years from planning to implementation — means that most of the time our systems are
running on obsolete hardware that limits our ability to implement the algorithms required to provide
the level of performance required to stay ahead of our adversaries. Moving to the cloud provides
a solution to this issue for enterprise and other software systems that do not operate on local or
specialized hardware. However for weapons systems, a continuous hardware refresh mentality
would enable software upgrades, crypto updates, and connectivity upgrades to be rapidly
deployed across a fleet, rather than maintaining legacy code for different variants that have
hardware capabilities ranging from 2 to 12 years old (an almost impossibly large spread of
capability in computing, storage, and communications). From a contracting perspective, this
change would require DoD to provide a stable annual budget that paid for new hardware and
software capability (see Commandment #3), but this would very likely save money over the longer
term.

SWAP Study Final Release, 3 May 2019 S81

Defense Innovation Board
Metrics for Software Development

Software is increasingly critical to the mission of the Department of Defense (DoD), but DoD
software is plagued by poor quality and slow delivery. The current state of practice within DoD is
that software complexity is often estimated based on number of source lines of code (SLOC), and
rate of progress is measured in terms of programmer productivity. While both of these quantities
are easily measured, they are not necessarily predictive of cost, schedule, or performance. They
are especially suspect as measurements of program success, defined broadly as delivering
needed functionality and value to users. Measuring the health of software development activities
within DoD programs using these obsolete metrics is irrelevant at best and, at worst, could be
misleading. As an alternative, we believe the following measures are useful for DoD to track
performance for software programs and drive improvement in cost, schedule, and performance.

Target value (by software type)® Typical
DoD
COTS | Custom | COTS | Real-time ;/Oarl uSeV?/
| Metric apps | -ized SW| HW/OS | HW/SW
1 |[Time from program launch to deploymentof |<1mo | <3 mo <6 mo <1lyr 3-5yrs
simplest useful functionality
2 | Time to field high priority fcn (spec — ops) N/A <1 mo <3 mo <3 mo 1-5yrs
or fix newly found security hole (find — ops) <1 wk <1 wk <1 wk <1 wk 1-18 m
3 | Time from code committed to code in use <1 wk <1 hr <1 da <1 mo 1-18 m
4 | Time req’d for full regression test (automat’d) N/A <l da <1l da <1 wk 2yrs
and cybersecurity audit/penetration testing <lmo | <1 mo <1 mo <3 mo 2 yrs
5 | Time required to restore service after outage | <1 hr <6 hr <1 day N/A ?
6 | Automated test coverage of specs/code N/A >90% >90% 100% ?
7 | Number of bugs caught in testing vs field use | N/A >75% >75% >90% ?
8 | Change failure rate (rollback deployed code) <1% <5% <10% <1% ?
9 | % code avail to DoD for inspection/rebuild N/A 100% 100% 100% ?
10 | Number/percentage of functions implemented | 80% 90% 70% 95% 100%
11 | Usage and user satisfaction TBD TBD TBD TBD ?

5 Target values are notional; different types of software (SW) as defined in DIB Ten Commandments.

Acronyms defined: Commercial off-the-shelf (COTS), apps is short for applications, specs is short for
specifications, hardware/operating system (HW/OS), hardware/software (HW/SW)

SWAP Study Final Release, 3 May 2019 S82

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

12 | Complexity metrics #/type of specs # programmers | Partial/
structure of code #/skill level of teams | manual

13 | Development plan/environment metrics #ltype of platforms #/type deployments | tracking

1.5X each | 1.25X

14 | “Nunn-McCurdy” threshold (for any metric) 1.1X 1.25X 1.5X offort Total $

Supporting Information

The information below provides additional details and rationale for the proposed metrics. The
different types of software considered in the document are described here in greater depth,
followed by comments on the proposed metrics, grouped into four categories: (a) deployment
rate metrics, (b) response rate metrics, (c) code quality metrics, and (d) program management,
assessment and estimation metrics.

Software Types (from DIB Ten Commandments)

Not all software is alike, and different types of software require different approaches for
development, deployment, and life-cycle management. It is important to avoid a “one size fits all”
approach to weapons systems. Acquisition practices for hardware are almost never right for
software: they are too slow, too expensive, and too focused on enterprise-wide uniformity instead
of local customization. Similarly, the process for obtaining software to manage travel is different
than what is required to manage the software on an F-35. We suggest a taxonomy with four types
of software requiring four different approaches:

e A: commercial (“off-the-shelf”) software with no DoD-specific customization required,;
e B: commercial software with DoD-specific customization needed;

e C: custom software running on commodity hardware (in data centers or in the field);
e D: custom software running on custom hardware (e.g., embedded software).

Type A (COTS apps): The first class of software consists of applications that are available from
commercial suppliers. Business processes, financial management, human resources, accounting
and other “enterprise” applications in DoD are generally not more complicated nor significantly
larger in scale than those in the private sector. Unmodified commercial software should be
deployed in nearly all circumstances. Where DoD processes are not amenable to this approach,
those processes should be modified, not the software.

Type B (Customized SW): The second class of software constitutes those applications that
consist of commercially available software that is customized for DoD-specific usage.
Customizations can include the use of configuration files, parameter values, or scripted functions
that are tailored for DoD missions. These applications will generally require configuration by DoD
personnel, contractors, or vendors.

Type C (COTS HW/OS): The third class of software applications is those that are highly
specialized for DoD operations but can run on commercial hardware and standard operating
systems (e.g., Linux or Windows). These applications will generally be able to take advantage of

SWAP Study Final Release, 3 May 2019 S83

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

commercial processes for software development and deployment, including the use of open
source code and tools. This class of software includes applications that are written by DoD
personnel as well as those that are developed by contractors.

Type D (Custom SW/HW): This class of software focuses on applications involving real-time,
mission-critical, embedded software whose design is highly coupled to its customized hardware.
Examples include primary avionics or engine control, or target tracking in shipboard radar
systems. Requirements such as safety, target discrimination, and fundamental timing
considerations demand that extensive formal analysis, test, validation, and verification activities
be carried out in virtual and “iron bird” environments before deployment to active systems. These
considerations also warrant care in the way application programming interfaces (APIs) are
potentially presented to third parties.

Types of Software Metrics
Deployment Rate Metrics

Overview: Consistent with previous Defense Innovation Board (DIB) commentary, and software
industry best practices, an organizational mentality that prioritizes speed is the ultimate
determinant of success in delivering value to end users. An approach to software development
that privileges speed over other factors drives efficient decision-making processes; forces the use
of increased automation of development and deployment processes; encourages the use of code
that is machine-generated as well as code that is correct-by-construction; relies heavily on
automated unit and system level testing; and enables the iterative, deliver-value-now mentality of
a modern software environment. Thus we list these metrics first.

Target value (by software type) Typical
DoD
I
COTS | Custom | COTS | Real-time ;/oar lg;/
| Metric apps | ized SW | HW/OS | HW/SW
Time from program launch to deployment of [<1mo | <3 mo <6 mo <1lyr 3-5yrs
simplest useful functionality
2 | Time to field high priority fcn (spec — ops) N/A <1 mo <3 mo <3 mo 1-5yrs
or fix newly found security hole (find — ops) <lwk | <1wk <1 wk <1 wk 1-18 m
3 | Time from code committed to code in use <1 wk <1 hr <1 da <1 mo 1-18 m

Background: These measures capture the rate at which new functions and changes to a
software application can be put into operation (in the field):

1. The time from program launch to deployment of the “simplest useful functionality” is an
important metric because it determines the first point at which the code can start doing useful
work and also at which feedback can be gathered that supports refinement of the features.
There is a tendency in DoD to deliver code only once it has met all of the specifications, but
this can lead to significant delays in providing useful code to the user. We instead advocate

SWAP Study Final Release, 3 May 2019 S84

getting code in the hands of the user quickly, even if it only solves a subset of the full
functionality. Something is better than nothing, and user feedback often reveals omissions in
the specifications and can refine the initial requirements. As code becomes more customized,
this interval of time might extend due to the need to run more complex tests to ensure that all
configurations operate as expected, and that complex timing and other safety/mission-critical
specifications are satisfied. It is important to note that this metric is not just about coding time.
It also measures the time required to process and adjudicate the changes (including release
approval), often the most time-consuming part of providing new or upgraded functionality.

2. Once the code is deployed, it is possible to measure the amount of time that it takes to make
incremental changes that either implement new functions or fix issues that have been
identified. The importance of the functionality or severity of the error will determine how quickly
these changes should be made, but it should be possible to deploy high priority code updates
much more quickly and in much smaller increments than typical DoD “block” upgrades. A
similar measure to the time it takes to deploy code to the field is deployment frequency.
Deployment frequency can be on-demand (multiple per day), once per hour, once per day,
once per week, etc. Faster deployment frequency often correlates with smaller batch sizes.

3. The time from which code is committed to a repository until it is available for use in the field is
referred to as “lead time,” and good performance on this metric is a necessary condition for
rapid evolution of delivered software functionality. Shorter product delivery times demand
faster feedback, which enables tighter coupling to user needs. For commercially available
applications, the lead time will be based on vendor deployment processes and may be slower
than what is needed for customized code, be it for commercial hardware/operating systems
or custom hardware. However, we believe that in the selection of commercial software,
emphasis should be given to the vendor’s iteration cycles and lead time performance.
Embedded code will often require much more extensive testing before it is deployed, and
therefore its lead time may be longer.

Response Rate Metrics

Overview: Our philosophy is that delivering a partial solution to the user quickly is almost always
better than delivering a complete or perfect solution at the end of a contract, on the first attempt.
Consistent with that, mistakes will occur. No software is bug-free, and so it is unrealistic and
unnecessary to insist on that, except where certain safety matters are concerned.® Code that
does most things right will still be useful while a patch is being identified and fielded. How
gracefully software fails, how many errors are caught and resolved in testing, and how rapidly
developers patch bugs are excellent measures of software development prowess.

6 The Department and its suppliers (due to the requirements of the contracts to which they are bound) often
resort to blanket pronouncements about safety and security, which often lead to applying the most extreme
measures even when not needed,; this risk-averse approach to treating everything as a grave risk to cyber
security or safety has been labeled by the DIB as a “self-denial of service attack.” While cybersecurity is
clearly critical for software systems, the Department needs to rely on product managers who use judgment
to make subtle, nuanced, and risk-based judgments about trade-offs during the software development
process.

SWAP Study Final Release, 3 May 2019 S85

Target value (by software type) Typical
DoD
COTS | Custom | COTS | Real-time ;’Oar' o
| Metric apps | ized SW | HW/OS | HW/SW
Time required for full regression test N/A <1 da <1 da <1 wk 2 yrs
(automated) and cybersecurity
A . - <lmo| <1mo <1 mo <3 mo 2yrs
audit/penetration testing
5 | Time required to restore service after outage | <1 hr <6 hr <1 day N/A8 ?

Background: These two metrics are intended for “generic” software programs with moderate
complexity and criticality. Their purpose is to:

4. Measure the ability to conduct more complete functional tests of the full software suite (e.g.,
regression tests) in a timely fashion, to identify problems in deployed software that can be
quickly corrected, and to restore service after an incident such as an unplanned outage or
service impairment, occurs (also called “mean time to repair,” (MTR)).

5. Track the time required to resolve an interruption to service, including a bad deployment.

Code Quality Metrics

Overview: These metrics are intended to be used as a measure of the quality of the code and to
focus on identifying errors in the code, either at the time of development (e.qg., via unit tests) or in
the field.

Target value (by software type) Typical
DoD
COTS | Custom | COTS | Real-time | values
| Metric apps | ized SW | HW/OS | HW/SW | for SW
6 | Automated test coverage of specs/code N/A >90% >90% 100% ?
7 | Number of bugs caught in testing vs field use [N/A >75% >75% >90% ?
8 | Change failure rate (rollback deployed code) <1% <5% <10% <1% ?
9 | % code avail to DoD for inspection/rebuild N/A 100% 100% 100% 0%

” The two different response rate metrics for different types of software reflect the level of complexity of the
software, the likely resources available to identify and fix problems, and the level of integration of the
hardware and software.

8 We note that for embedded systems, which must be running at all times and which are updated much
less frequently, the notion of “restoring” service is not directly applicable.

SWAP Study Final Release, 3 May 2019 S86

Background:

6. Automated developmental tests provide a means of ensuring that updates to the code do not
break previous functionality and that new functionality works as expected. Ideally, for each
function that is implemented, a set of automated tests will be constructed that cover both the
specification for what the performance should achieve as well as the code that is used to
implement that function.

7. The percentage of specifications tested by the automated test suite provides rapid confidence
that a software change has not caused some specification to fail, as well as confidence that
the software does what it is supposed to do. Test coverage of the code is a common metric
for software test quality and one that most software development environments can compute
automatically (e.g., in a continuous integration (CI) workflow, each commit and/or pull request
to a repository would run all the automated developmental tests and compute the percentage
covered). For customized software and applications that run on commercial hardware and
operating systems, 90% unit test coverage is a good target. Embedded code should strive for
100% coverage (i.e., no “dark” code) since it is often safety- or mission-critical.® The focus of
these metrics is on developmental tests, as operational testing is important, but expensive, so
it is far less expensive to find and fix defects through developmental testing.

8. Developmental tests do not cover every conceivable situation in which an application might
be used, so errors will be discovered in the field. The percent of bugs caught in testing (via
unit tests or regression tests) versus those caught in the field provide a measure of the both
the quality of the code and the thoroughness of the testing environment. Bugs discovered late
in the development cycle or after deployment can “cost” an order of magnitude more than
early bugs (in terms of time to fix and impact to a program), and a software system that is
mature finds many more bugs during testing and few in the field. Late bugs are particularly
expensive when fixing those bugs can require hardware changes, and so code running on
custom hardware should be tested more strenuously. Bugs should be prioritized by severity
and the trends over time for serious bugs should be monitored and used to drive changes in
the test environment and software development process.

9. When bugs do occur, it may be necessary to roll back the deployed code and return to an
earlier version. Change fail percentage is the percentage of changes to production that fail,
including software releases and infrastructure changes. This should include changes that
result in degraded service or subsequently require remediation, such as those that lead to
service impairment or outage, or require a hotfix, rollback, fix-forward, or patch. For COTS
applications, this should occur rarely because the amount of testing done by the vendor,
including test deployments to beta users, will typically be very high. There may be a higher
change failure rate as the application becomes more customized—because it can be difficult
to test for issues where there is a variety of hardware configurations operating in the field, for
example—but for embedded code, the change failure rate should be small, due to the more
safety-critical nature of that code leading to more emphasis on up-front testing.

Functionality metrics

Overview: These metrics are intended to capture how useful the software program is in terms of
delivering value to the field. We envision that a software program will have a number of desired

9 Safety- or mission-critical software often strives for more rigorous test coverage metrics, such as high
branch coverage or in some cases high modified condition/decision coverage (MC/DC).

SWAP Study Final Release, 3 May 2019 S87

features that define its functionality. Software should be instrumented so that the use of those
features is measured and, when appropriate, users of the software should be monitored or
surveyed to determine their use of/satisfaction with the software.

Target value (by software type) Typical
DoD
COTS | Custom | COTS | Real-time ;/Oarllge\:/
| Metric apps | -ized SW| HW/OS | HW/SW
10 | Number/percentage of functions implemented | 80% 90% 70% 95% 100%
11 | Usage and user satisfaction TBD TBD TBD TBD ?
Background:
10. An ongoing software program will have some number of functions that it performs and a list

11.

of additional functions that are to be added over time. These new functions could be feature
requires from users or desired features generated by the program office that are on the list for
consideration to be implemented next. Keeping track of these features and the rate at which
they are implemented provides a measure of the delivery of functionality to the user. This
specific way in which functionality is measured will be dependent on the type of software being
developed.

For software that is used by a person, the ultimate metric is whether the software is helping
that person get useful work done. Keeping track of the usage of the software (and different
parts of the software) can be done by instrumenting the code and keeping track of the data it
generates. To determine whether or not the software is providing good value to the person
who is using it, surveying the user may be the most direct mechanism (similar to rating
software that you use on a computer or smart phone).

Program Management, Assessment, and Estimation Metrics

Overview: The final set of metrics are intended for management of software programs, including
cost assessment and performance estimation. These metrics describe a list of “features”
(performance metrics, contract terms, project plans, activity descriptions) that should be required
as part of future software projects to provide better tools for monitoring and predicting time, cost,
and quality. In its public deliberations regarding software acquisition and practices, the DIB has
described how metrics of this type might be used to estimate the cost, schedule, and performance
of software programs.

Target value (by software type) Typical

DoD
COTS | Custom | COTS |Real-time | yalues
| Metric apps ized SW | HW/OS | HW/SW for SW
12 | Complexity metrics #/type of specs # programmers Partial/
- - structure of code #/skill level of teams manual
13 | Development plan/environment metrics #ltype of platforms #/type deployments | tracking

SWAP Study Final Release, 3 May 2019 S88

14

“Nunn-McCurdy” threshold (for any metric) 1.1X 1.25X 1.5X

1.5X each | 1.25X
effort Total $

Background:

12. Structure of specifications, code, and development and execution platforms.

To measure the complexity of a software program, and therefore assess the cost, schedule
and performance of that program, a number of features must be measured that capture the
underlying “structure” of the application. The use of the term “structure” is intentionally flexible,
but generally includes properties such as size, type, and layering. Examples of features that
can be captured that related to underlying complexity include:

Structure of specifications: Modern specification environments (e.g., application life-cycle
management [ALM] tools) provide structured ways of representing specifications, from
program level requirements to derived specifications for sub-systems, or individual teams.
The structure represented in these tools can be used as a measure of the difficulty of the
application that is being designed.

Level and type of user engagement during application development: How much time do
developers spend with users, especially early in the program? How many developers are
“on site” (in the same organization and/or geographic location as the end user)?

Structure of the code base (software architecture): Modern software development
environments allow structured partitioning of the code into functions, libraries/frameworks,
and services. The structure of this partitioning (number of modules, number of layers, and
amount of coupling between modules and layers) can provide a measure of the complexity
of the underlying code.

The amount of reuse of existing code, including open source code: In many situations
there are well-maintained code bases that can be used to quickly create and scale
applications without rewriting software from scratch. These libraries and code frameworks
are particularly useful when using commodity hardware and operating systems, since the
packages will often be maintained and expanded by others, leveraging external effort.

Structure of the development platform/environment: This includes the software
development environments that are being used, the types of programming methodologies
(e.q., XP, agile, waterfall, spiral) that are employed, and the level of maturity of the
programming organization (ISO, CMMI, SPICE).

Structure of the execution platform/environment: The execution environment can have an
impact on the ability to emulate the execution environment within the development
environment, as well as the portability of applications between different execution
environments. Possible platforms include various cloud computing environments as well
as platform-as-a-service (PaaS) environments that support multiple cloud computing
vendors.

13. Structure and type of development and operational environment.

SWAP Study Final Release, 3 May 2019 S89

To predict and monitor the level of effort required to implement and run a software application,
measurement of the development and operation environments is critical. These
measurements include the structure of those environments (e.g., waterfall versus spiral
versus agile, use of continuous integration tools, integrated tools for issue tracking/resolution,
code review mechanisms), the tempo of development and delivery, and use of the functionality
provided by the application. Example of features that can be captured that relate to the
structure and type of development and operation use:

Number and skill level of programmers on the development team

Number of development platforms used across the project

Number of subcontractors or outside vendors used for application components

Number and type of user operating environments (execution platforms) supported

Rate at which major functions (included in specifications) are delivered and updated
Rate at which the operational environment must be updated (e.g., hardware refresh rate)
Rate at which the mission environment changes (driving changes to the code)

Number (seats or sites) and skill level of the users of the software

14. Tracking software program progress

To properly manage the continuous development and deployment of software, DoD should
be able to track the metrics above with minimal additional effort from the programmers
because this information should be gathered and transmitted automatically through the
development, deployment, and execution environments, using automated tools. Some
examples of the types of metrics that are readily available include commit activity data
(number and rate of commits), team size, number of commenters (on pull requests), number
of pull request mergers, average and standard deviation of the months in which there was
development activity, average and standard deviation of the number of commits per month.

Thresholds should be established to determine when management attention is required, but
also when a program is so far off its initial plan that it should be re-evaluated. Today’s “Nunn-
McCurdys” or “Critical Changes” refer to breaches in cost or schedule thresholds. The current
25% unit cost growth and 50% total program cost growth thresholds often will not make sense
for continuously developed software programs.

An alternative to cost-based thresholds is to establish thresholds based on the metrics listed
above, with different thresholds for different types of software. A notion of a “Nunn-McCurdy
type breach” for software programs based on some of the above performance metrics
recorded at lower levels of effort or on specific applications could serve as better means of
identifying major issues earlier in a program. Commercially available software, with or without
customization, should be the easiest type for which to establish accurate metrics, since it
already exists and should be straightforward to purchase and deploy. Metrics for customized
software running on either commercial or DoD-specific hardware is likely to be more difficult
to predict, so a higher threshold can be used in those circumstances.

SWAP Study Final Release, 3 May 2019 S90

Defense Innovation Board Do’s and Don’ts for Software

This document provides a summary of the Defense Innovation Board’s (DIB’s) observations on
software practices in the DoD and a set of recommendations for a more modern set of
acquisition and development principles. These recommendations build on the DIB’s “Ten
Commandments of Software.” In addition, we indicate some of the specific statutory, regulatory,
and policy obstacles to implementing modern software practices that need to be changed.

Executive Summary

Observed practice (Don’ts)

Desired state (Do’s)

Obstacles

v SEC

g

10 U.S.C. 82334
10 U.S.C. §2399
10 U.S.C. §2430
10 U.S.C 82433a

10 U.S.C. 82460
10 U.S.C. 82464
. DODI 5000.02
: - par 5.c.(2) and
R e R, U) Y A | - — - Py - - (M)_()
Defense Acquisition University, June 2010 ?ﬁ%f,‘i’ffﬁg{ﬂfﬁgﬂi;!“ﬁz'ergegggﬁ’;%"F"e'Dew"’s oolehain.sy 5.c.(3)(c)-(d
Spend 2 years on excessively Require developers to meet with end DODI 5000.02
detailed requirements development users, then start small and iterate to par 5.c.(2)
quickly deliver useful code
CJCSI 3170.011
App A.lb

Define success as 100% compliance
with requirements

Accept 70% solutions®® in a short time
(months) and add functionality in rapid
iterations (weeks)

10 U.S.C. §2399

OMB Cir A-11
pp 42-43

Require OT&E to certify compliance
after development and before
approval to deploy

Create automated test environments to
enable continuous (and secure) integra-
tion and deployment to shift testing left

10 U.S.C. 8139b/d
10 U.S.C. 82399

Cultural

Apply hardware life-cycle
management processes to software

Take advantage of the fact that software
is essentially free to duplicate, distribute,
and modify

10 U.S.C. 82334
10 U.S.C. 82399
10 U.S.C. 82430
48 CER 207.106
DODI 5000.02

Require customized software
solutions to match DoD practices

For common functions, purchase existing
software and change DoD processes to
use existing apps

Culture

10 70% is notional. The point is to deliver the simplest, most useful functionality to the warfighter quickly.

SWAP Study

Final Release, 3 May 2019

S91

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://www.law.cornell.edu/uscode/text/10/2334
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2431a
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
http://www.jcs.mil/Portals/36/Documents/Library/Instructions/3170_01a.pdf?ver=2016-02-05-175022-720
http://www.jcs.mil/Portals/36/Documents/Library/Instructions/3170_01a.pdf?ver=2016-02-05-175022-720
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/139
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2334
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/cfr/text/48/207.106

Use legacy languages and operating
systems that are hard to support and
insecure

Use modern software languages and
operating systems (with all patches up-
to-date)

10 U.S.C. 82334

DoDI 5000.02
Enclosure 11

Culture

Evaluate cyber security after the
systems have been completed,
separately from OT&E

Use validated software development
platforms that permit continuous
integration & evaluation (DevSecOps)

DOT&E Memos

Culture

Consider development and
sustainment of software as entirely
separate phases of acquisition

Treat software development as a
continuous activity, adding functionality
across its life cycle

10 U.S.C. §2399
10 U.S.C. §2430
10 U.S.C. 82460
10 U.S.C. 82464

DODI 5000.02

par 5.c.(2) and
5.¢.(3)(c)-(d)

Depend almost entirely on outside
vendors for all product development
and sustainment

Require source code as a deliverable on
all purpose-built DoD software contracts.
Continuous development and integration,
rather than sustainment, should be a part
of all contracts. DoD personnel should be
trained to extend the software through
source code or API access!!

Culture

(no apparent
statutory obstacle)

FAR/DFARS
technical data
rights

Turn documents like this into a
process and enforce compliance

Hire competent people with appropriate
expertise in software to implement the
desired state and give them the freedom
to do so (“competence trumps process”)

Culture

11 As noted in the DIB’s 10 Commandments of Software

SWAP Study

Final Release, 3 May 2019

S92

https://www.law.cornell.edu/uscode/text/10/2334
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268
https://dzone.com/refcardz/introduction-to-devsecops?chapter=3
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

Supporting Information

The information below, broken out by entry in the executive summary table (see table E.8
above), provides additional information and a rationale for each desired state.

Don’t Do

Defense Acquisition University, June 2010 https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

The DoD 5000 process, depicted on the left in figure E.1, provides a detailed DoD process for
setting requirements for complex systems and ensuring that delivered systems are compliant
with those requirements. The DoD’s “one size fits all” approach to acquisition has attempted to
apply this model to software systems, where it is wholly inappropriate. Software is different than
hardware. Modern software methods make use of a much more iterative process, often referred
to as “DevOps,” in which development and deployment (operations) are a continuous process,
as depicted on the right. A key aspect of DevOps is continuous delivery of improved
functionality through interaction with the end user.

Why this is hard to do, but also worth doing:*2

e DoD 5000 is designed to give OSD, the Services, and Congress some level of visibility
and oversight into the development, acquisition, and sustainment of large weapons
systems. While this directive may be useful for weapons systems with multi-billion dollar
unit costs, it does not make sense for most software systems.

e While having one consistent procurement process is desirable in many cases, the cost
of using that same process on software is that software is delivered late to need, costs
substantially more than the proposed estimates, and cannot easily be continuously
updated and optimized.

e Moving to a software development approach will enable the DoD to move from a specify,
develop, acquire, sustain mentality to a more modern (and more useful) create, scale,
optimize (DevOps/DevSecOps) mentality. Enabling rapid iteration will create a system in
which the United States can update software at least as fast as our adversaries can
change tactics, allowing us to get inside their OODA loop.

12 These comments and the similar ones that follow for other area were obtained by soliciting feedback on
this document from people familiar with government acquisition processes and modern software
development environments.

Acronyms defined: Office of the Secretary of Defense (OSD), OODA is short for the decision cycle of
Observe, Orient, Decide, and Act.

SWAP Study Final Release, 3 May 2019 S93

http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-The-Defense-Acquisition-System-10-Aug-17-Change-3.pdf

Don’t Do

Spend 2 years on excessively detailed Require developers to meet with end users, then
requirements development start small and iterate to quickly deliver useful code
Define success as 100% compliance to Accept 70% solutions in a short time (months) and
requirements add functionality in rapid iterations (weeks)

Developing major weapons systems is costly and time consuming, so it is important that the
delivered system meets the needs of the user. The DoD attempts to meet these needs with a
lengthy process in which a series of requirements are established, and a successful program is
one that meets those requirements (ideally close to the program’s cost and schedule estimates).
Software, however, is different. When done right, it is easy to quickly deploy new software that
improves functionality and, when necessary, rapidly rollback deployed code. It is more useful to
get something simple working quickly (time-constrained execution) and then exploit the ability to
iterate rapidly in order to get the remaining desired functionality (which will often change in any
case, either in response to user needs or adversarial tactics).

Why this is hard to do, but also why it is worth doing:

Global deployment of software on systems which are not always network-connected
(e.q., an aircraft carrier or submarine underway) introduces very real problems around
version management, training, and wisely managing changes to mission-critical
systems.

In the world of non-military, consumer Internet applications, it is easy to glibly talk about
continuous deployment and delivery. In these environments, it is easy to execute and
the consequences for messing up (such as making something incredibly confusing or
hard to find) are minor. The same is not always true for DoD systems—and DoD
software projects rarely offer scalable and applicable solutions to address the need for
continuous development.

Creating an approach (and the supporting platforms) that enables the DoD to achieve
continuous deployment is a non-trivial task and will have different challenges than the
process for a consumer Internet application. The DoD must lay out strategies for
mitigating these challenges. Fortunately, there are tools that can be build upon: many
solutions have already been developed in consumer industries that require failsafe
applications with security complexities.

Continuous deployment depends on the entire ecosystem, not just the front-end
software development.

Make sure to focus on product design and product management, which prioritizes
delivery of capability to meet the changing needs of users, rather than program/project
management, which focus on execution against a pre-approved plan. This shift is key to
user engagement, research, and design.

SWAP Study Final Release, 3 May 2019 S94

Don’t Do

Require OT&E to certify compliance after Create automated test environments to enable

development and before approval to deploy continuous (and secure) integration and deployment
to shift testing left

Evaluate cyber security after the system has Use validated software development platforms that

been completed, separately from OT&E permit continuous integration and evaluation

Why this is hard to do, but also worth doing:

The DoD typically performs a cyber evaluation on software only after delivery of the
initial product. Modern software approaches have not always explicitly addressed cyber
security (though this is changing with “DevSecOps”). This omission has given DoD
decision-makers an easy “out” for dismissing recommendations (or setting up
roadblocks) for DevOps strategies like continuous deployment. Cyber security concerns
must be addressed head on, and in a manner that demonstrates better security in
realistic circumstances. Until then, change is unlikely.

More dynamic approaches to address the cyber security concerns must be developed
and implemented through some amount of logic and a fair bit of data. Case studies of
red teaming also help: Hack the Pentagon should be able to provide some true
examples that generate concern. It may be necessary to obtain access to some
additional good data that goes beyond what corporations are willing to share publicly.

To succeed, it will be important not to assume that it will be clear how these
recommendations solve for all cyber security concerns. Recommendations should make
explicit statements about what can be accomplished, taking away the reasons to say
“no.”

Don’t

Do

Apply hardware life-cycle management processes | Take advantage of the fact that software is
to software essentially free to duplicate, distribute, and modify

Consider development and sustainment of Treat software development as a continuous
software as entirely separate phases of acquisition | activity, adding functionality across its life cycle

Why this is hard to do, but also worth doing:

Program of record funding is specifically broken out into development and sustainment.
These distinct categories of appropriations lead program managers and acquisition
professionals to the conclusion that new functionality can only be added within
development contracts and that money allocated for sustainment cannot be used to add
new features. Vendor evaluation for development and sustainment contracts are
different; vendors on sustainment contracts often do not have the same development
competencies and frequently are not the people who built the original system. To create
an environment that will support a DevOps/DevSecOps approach, DoD Commands and
Services should jointly own the development and maintenance of software with
contractors who provide more specialized capabilities. Contracts for software should
focus on developing and deploying software (to operations) over the long term, rather

SWAP Study Final Release, 3 May 2019 S95

than the typical, sequential approach - “acquiring” software followed by “sustaining” that
software.

Don’t Do

Require customized software solutions to match | For common functions, purchase existing software
DoD practices and change DoD processes to use existing apps

Business processes, financial, human resources, accounting and other “enterprise” applications
in the DoD are generally not more complicated nor significantly larger in scale than those in the
private sector. Commercial software, unmodified, should be deployed in nearly all
circumstances. Where DoD processes are not amenable to this approach, those processes
should be modified, not the software. Doing so allows the DoD to take advantage of the much
larger commercial base for common functions (e.g., Concur has 25M active users for its travel
software).

Don’t Do
Use legacy languages and operating systems Use modern software languages and operating
that are hard to support and insecure systems (with all patches up-to-date)

Modern programming languages and software development environments have been optimized
to help eliminate bugs and security vulnerabilities that were often left to programmers to avoid
(an almost impossible endeavor). Additionally, outdated operating systems are a major security
vulnerability and the DoD should assume that any computer running such a system will
eventually be compromised.*® Standard practice in industry is to apply security patches within
48 hours of release, though even this is probably too big a window for defense systems. Treat
software vulnerabilities like perimeter defense vulnerabilities: if there is a hole in your perimeter
and people are getting in, you need to patch the hole quickly and effectively.

Why this is hard to do, but also worth doing:

e DoD looks at the cost of upgrading hardware as a major cost that is tied to
“modernization.” But hardware should be thought of as a consumable like any other,
such as fuel and parts, that must be continually replaced for a weapon system to
maintain operational capability. This change would require DoD to provide a stable
annual budget that paid for new hardware and software capability.

e The advantage of using modern hardware and operating systems on DoD systems are
manifold: better security, better functionality, reduced (unit) costs, and lower overall
maintenance costs.

13 See the DIB 10 Commandments of Software supporting thoughts and recommendations. “Move to a
model of continuous hardware refresh in which computers are treated as a consumable with a 2-3 year
lifetime.”

SWAP Study Final Release, 3 May 2019 S96

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

Don’t Do

Turn documents like this into a process and Hire competent people with appropriate expertise in
enforce compliance software to implement the desire state and give them
the freedom to do so (“‘competence trumps process”)

Why this is hard to do, but also why it is worth considering doing it:

e Good engineers want to build things, not just write and evaluate contracts. If their jobs
are mainly contracting or monitoring, their software skills will quickly become outdated.
This can be solved in the short term by a rotational program: do not allow programmers
to stay in contracting for more than 4 years, so their technical capabilities are current.

e The government must team with commercial companies to ensure that it has access to
the collection of talent required to develop modern software systems, as well as develop
internal talent. The DoD should increase its use of contractors whose aim is not just to
provide software, but to increase the software development capabilities and competency
of the department. By making use of enlisted personnel, reservists, contractors, and
other resources, it is possible to create and maintain highly effective teams who
contribute to national security through software development.

Additional Obstacles

In addition to the specific obstacles listed above, we capture here a collection of statutes,
regulations, processes and cultural norms that are impediments to implementing a modern set
of software acquisition and development principles.

Statutes

The statutes below provide examples of impediments to the implementation of modern software
development practices in DoD systems.

Acquisition strategy (10 U.S.C §2431a): 2431a(d) establishes the review process for major
defense acquisition programs and is written around the framework of waterfall development for
long timescale, hardware-centric programs. In particular, this statute establishes decision-gates
at Milestone A (entry into technology maturation and risk reduction), Milestone B (entry into
system development and demonstration), and entry into full-rate production. For many software
programs this set of terms and approach does not make sense and is incompatible with the
ability to deliver capability to the field in a rapid fashion.

Critical cost growth in major defense acquisition programs (10 U.S.C. §2433a [Nunn-McCurdy]):
2433 establishes the conditions under which Congress reviews a major program that has
undergone critical cost growth and determines with it should continue. By the time a software
program hits a Nunn-McCurdy breach it has already gone well past the point where the program
should have been terminated and restarted using a different approach. All software procurement
programs should start small, be iterative, and build on success — or be terminated quickly.

SWAP Study Final Release, 3 May 2019 S97

https://www.law.cornell.edu/uscode/text/10/2431a
https://www.law.cornell.edu/uscode/text/10/2433a

Independent cost estimation and cost analysis (10 U.S.C. §2334)

Working capital funds (10 U.S.C. 82208(r)):

e 2+ year lead times from plan to budget does not allow for continuous engineering

e Differentiating software development workload as Research, Development, Test and
Engineering (RDT&E), Procurement, or Operations and Maintenance (O&M) is
meaningless as there should be no final fielding or sustainment element to continuous
engineering.

e System-defined program elements hinder the ability to deliver holistic capabilities and
enable real-time resource, requirements, performance and schedule trades across
systems without significant work.

Operational Test and Evaluation (10 U.S.C. 8139b/d, 10 U.S.C. §2399): 139 establishes the
position of the Director of Operational Test and Evaluation (DOT&E) and requires that person to
carry out field tests, under realistic combat conditions, of weapon systems for the purpose of
determining the effectiveness and suitability of those systems in combat by typical military
users. 2399(a) states that a major defense acquisition program “may not proceed beyond low-
rate initial production until initial operational test and evaluation of the program, subprogram, or
element is completed.” 2399(b)(4) further states that the program many not proceed “until the
Director [of Operational Test and Evaluation] has submitted to the Secretary of Defense the
report with respect to that program under paragraph (2) and the congressional defense
committees have received that report.” These are obstacles for DevSecOps implementation of
software, where changes should be deployed to the field quickly as part of the (continuous)
development process. They are an example of a “tailgate” process for OT&E that impedes our
ability to deploy software quickly and drives a set of processes in which OT&E impedes rather
than enhances the software development process. Instead of this process, Congress should
allow independent OT&E of software to occur in parallel with deployment and also require that
OT&E cycles for software match development cycles through the use of automated workflows
and test harnesses wherever possible.

Additional issues:

e Testing and evaluation (T&E) must be integrated into the development life cycle to
facilitate DevSecOps, and reduce operations and sustainment (O&S) costs. T&E should
be present from requirements setting to O&S

e Programs need persistent and realistic environments that permit continuous, agile
testing of all systems (embedded, networked, etc.) in a representative SoS environment

e Software environments should be part of the contract deliverables and accessible to
T&E, including source code, build tools, test scripts, data

Definition of a major acquisition program (10 U.S.C. §2430): The designation of a program as a
major acquisition program triggers a set of procedures that are designed for acquisition of
hardware. This includes triggering of the DoD Instruction 5000.02, which is currently tuned for
hardware systems. An alternative instruction, DoD Instruction 5000.75, is better tuned for
software, but can only used for defense business systems; it is not valid for “weapons systems.”

SWAP Study Final Release, 3 May 2019 S98

https://www.law.cornell.edu/uscode/text/10/2334
https://www.law.cornell.edu/uscode/text/10/2208
https://www.law.cornell.edu/uscode/text/10/139
https://www.law.cornell.edu/uscode/text/10/2399
https://www.law.cornell.edu/uscode/text/10/2430
https://aida.mitre.org/dodi-5000/
https://aida.mitre.org/dodi-5000-75/

Depot level maintenance and repair; core logistics (10 U.S.C. 82460, 10 U.S.C. §2464): The
definitions of maintenance, repair, and logistics are based on an acquisition model that is
appropriate for hardware but not well aligned with the operation of modern software. For
example, §2464 says that Services will “maintain and repair the weapon systems.” But software
is not maintained, it is optimized (with better performance and new functionality) on a
continuous basis. 82460(b)(1) further states that depot level maintenance and repair “does not
include the procurement of major modifications or upgrades of weapon systems that are
designed to improve program performance.”

Additional issues:

e DoD'’s challenge in shifting from applying a Hardware (HW) maintenance mindset to
Software (SW) hinders DoD’s ability to better leverage DoD’s organic SW engineering
infrastructure to deliver greater capability to the warfighter.

e DoD'’s acquisition process is not emphasizing an upfront focus on design for software
sustainment and a seamless transition to organic software engineering sustainment to
reduce the life-cycle cost of software and to speed delivery of capability over the life
cycle. Such upfront emphasis is critical given the scope, complexity, and mix of the
growing software sustainment demand, in the face of persistent affordability concerns.

e DoD’s organic software engineering capabilities and infrastructure are critical to national
security, but there is limited enterprise visibility of this infrastructure, its capabilities,
workload, and resources to leverage it at the enterprise level to deliver greater capability
more affordably to the warfighter.

Regulations

The regulations are the mechanism by which the DoD implements the statutes that govern its
operations. They provide additional examples of impediments to the implementation of modern
software development practices in DoD systems.

Cost estimating system requirements (48 CFR 252.215-7002) : These regulations set out the

expectations for estimation of costs of a program against a set of system requirements. While
perhaps appropriate for a hardware-oriented system, they do not take into account the type of
continuous development cycle that is required to implement modern software.

Additional requirements for major systems (48 CFR 207.106): These regulations set out
procedures for competition of contracts and are written in a manner that separates out the initial
deployment of a system with the operation and sustainment of that system. This doesn’t make
sense for software.

Processes (Instructions)

The detailed processes used to implement the regulations are laid out in Department of Defense
Instructions. We illustrate here some of the specific instructions that are obstacles to
implementation of modern software development practices.

SWAP Study Final Release, 3 May 2019 S99

https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.law.cornell.edu/cfr/text/48/252.215-7002
https://www.law.cornell.edu/cfr/text/48/207.106

Major acquisition program development process (DODI 5000.02, par 5.¢.(2) and 5.c.(3)(c)-(d)):
These portions of the DoD Instructions apply to “Defense Unique Software Intensive” programs
and “Incrementally Deployed Software Intensive” programs. While well-intentioned, they are still
waterfall processes with years between the cycles of deployments (instead of weeks). These
processes may be appropriate for some embedded systems, but are not the right approach for

DoD-specific software running on commercial hardware and operating systems, as the

diagrams below illustrate:

Definitely not this:

Better, but still not right:

What we need:

Specify, design, deploy, sustain

DODI 5000 02 Flgure 4. Model 2:
Defense Unique Software Intensive Program

DODI 5000.02, Figure 5. Model 3: Incrementally
Deployed Software Intensive Program

Implement, scale, optimize

f

\

https://commons.wikimedia.org/wiki

[File:Devops-toolchain.svg
(modifications licensed CC-BY-SA)

Waterfall development

Waterfall development with
overlapping builds

Continuous integration and
deployment (DevSecOps)

Requirements for programs containing information technology (DoDI 5000.02, Enclosure 11): This
enclosure attempts to define the requirements for ensuring information security. It is written
under the assumption that the standard waterfall process is being used.

Preparation, Submission, and Execution of the Budget - Acceptance (OMB Cir A-11, 11.10): This
document is the primary document that instructs agencies how to prepare and submit budget
requests for OMB review and approval. Section 11.10 describes the conditions for acceptance of an
acquired item by the government, and requires that the asset meets the requirements of the
contract. The impact of this procedure is that it establishes a “100% compliance” mentality in order
for the government to accept a software “asset.”

Culture

In this final section we catalog a list of culture items that do not necessarily require changes in
statutes, regulations, or instructions, but rather a change in the way that DoD personnel
interpret implement their processes. Changing the culture of DoD is a complex process,
depending in large part on incentivizing the behaviors that will lead to the desired state.

Data and metrics

SWAP Study

Final Release, 3 May 2019

S100

https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268

Multiple, competing, and sometimes conflicting types of data and metrics used, or not
used, for assessing software in DOD

Inability to collect meaningful data about software development and performance in a
low cost manner, at scale

Inability to turn data into meaningful analysis and inability to implement decisions or
changes to software activities (L/R/C)

Contracts

Individual contracts are subject to review processes designed for large programs (of
which they are likely enabling). This limits the agility of individual contract actions, even
when modular contracting approaches are applied. In addition, the acquisition process is
rigid and revolves around templates, boards, and checklists thus limiting the ability for
innovation and streamlining execution.

Contracts focus on technical requirements instead of contractual process requirements.
The contract should address overall scope, PoP, and price. The technical execution
requirements should be separate and managed by the product owner or other technical
lead.

Intellectual Property (IP) rights are often generically incorporated without considering the
layers of technology often applied to a solution. A single solution might include open
source, proprietary SW, and government custom code. The IP clauses should reflect all
of the technology that is used.

Security Accreditation

Although developing and operating software securely is a primary concern, the means to
achieve and demonstrate security is overly complex and hampered by inconsistent and
outdated/misapplied policy and implementation practices (e.g., overlaying historical DoD
Information Assurance Certification and Accreditation Process (DIACAP) over risk
management framework (RMF) controls for individual pieces of software versus system
accreditation). The sense is that the certification and accreditation process is primarily a
“check- the-box” documentary process, adds little value to the overall security of the
system, and is likely to overlook flaws in the design, implementation, and the
environment in which the software operates.

The DoD needs to be able to calculate the true and component costs for implementing
the RMF and certification and accreditation (C&A) in order to identify inefficiencies,
duplicative capabilities, and redundant or overlapping security products and services that
are being acquired or developed. Absent a set of metrics it is difficult to prioritize risk
areas, investments, and evaluating risk reduction and return on investment.

The DoD needs to ensure that each Joint Capability Area (JCA) flow-down its strategy,
best practices, and implementation requirements/guidance for security and accreditation
to allow the Component responsible for implementing the software to appropriately tailor
RMF and plan the development, accreditation, and operation of the software.

The DoD needs to provide automated tools and services needed to integrate continuous
monitoring with the development life cycle, enable continuous assessment and
accreditation, and delegate decision making at the lowest level possible. The DoD
should embrace DevSecOps (not just DevOps) and provide policy supported processes,
certified libraries, tools, and a toolchain reference implementation to produce “born
secure” software

Testing and Evaluation

SWAP Study Final Release, 3 May 2019 S101

The DoD lacks the realistic test environments needed to support test at the pace of
modern software methods.

The DoD lacks the modern software intellectual property (IP) regime needed to support
test and evaluation at the pace of modern software methods

The DoD lack the enterprise knowledge management/data analytics capability needed to
support evaluation of test data at the pace of modern software methods

Workforce

No defined requirements for software developers
Antiquated policies (talent management, software development)
Culture and knowledge (DoD, societal, defense contractors)

Appropriations/Funding

2+ year lead times from plan to budget does not allow for continuous engineering
Differentiating software development workload as Research, Development, Test and
Engineering (RDT&E), Procurement, or Operations and Maintenance (O&M) is
meaningless as there should be no final fielding or sustainment element to continuous
engineering.

System defined program elements hinder the ability to deliver holistic capabilities and
enable real-time resource, requirements, performance and schedule trades across
systems without significant work.

Infrastructure

Creating software: The DoD lacks availability of vetted, secure, reusable components,
either as source code, or other digital artifacts (think hardened Docker containers or
virtual machines (VMs) here). A repository of discoverable, well indexed, vetted, secure,
and reusable components could go a long way. This also emphasizes the point that an
awful lot of software now-a-days is software by construction with minimal “glue” code
applied.

Building/managing/testing software: There is a general lack of available tools to build
software, especially automated tools (testing/scanning/fuzzing etc.) integrated into a
secure pipeline supporting rapid agile development. There is also a significant need to
have a common, government owned and managed code repository that all programs
could/should/must use (e.g., government-furnished GitHub).

Running/hosting software: The DoD needs to continually push the level of abstraction up
as much as possible for programs. Traditionally programs, even cloud-based solutions,
tend to start at Infrastructure as a Service (IaaS) and build their own rest of the stack.
We need secure and available Platform as a Service (PaaS) and Function as a Service
(FaaS) so that programs only need to focus on core business logic and not on securing
a database or message bus over and over again.

Operating/updating securely: Once developed and instantiated on a secure and
available platform, we need to continually monitor, red team (automated?), and evolve
the software. This requires proper instrumentation, logging, and monitoring of the
platform, supporting libraries/components, and the core program code. A
standard/common way to provide instrumentation and monitoring of the running services
built into the infrastructure would be very helpful.

Requirements

SWAP Study Final Release, 3 May 2019 S102

A byproduct of top-level requirement flow down is rigidity and over specificity at the
derived requirements level that greatly hinders agile s/w design.

Too often exquisite requirements are levied on a system that in turn drive extensive
complex software requirements and design, affecting development, integration, and
system test.

Data sets are siloed within programs: a common “law of requirements” is that programs
of record try to avoid dependencies with other programs of record. This is problematic
for software-based capabilities because data is often siloed within single programs of
record. We have network programs to “pass” data, but the promise of artificial
intelligence (Al), including machine learning (ML), is that software algorithms can
leverage pools of data from disparate sources (data lakes).

By tying software to a program of record, it becomes harder to transfer that code across
systems and data environments. As a result, DoD limits code reuse within and across
Services.

Modernization and sustainment

DoD'’s challenge in shifting from applying a hardware maintenance mindset to software
hinders DoD’s ability to better leverage DoD’s organic software engineering
infrastructure to deliver greater capability to the warfighter.

DoD’s acquisition process is not emphasizing an upfront focus on design for software
sustainment and a seamless transition to organic software engineering sustainment to
reduce the life-cycle cost of software and to speed delivery of capability over the life
cycle. Such upfront emphasis is critical given the scope, complexity, and mix of the
growing software sustainment demand, in the face of persistent affordability concerns.
DoD’s organic software engineering capabilities and infrastructure are critical to national
security, but there is limited enterprise visibility of this infrastructure, its capabilities,
workload, and resources to leverage it at the enterprise level to deliver greater capability
more affordably to the warfighter.

Acquisition Strategy

Acquisition policy framework: Create a cohesive acquisition policy architecture within
which effective, efficient software acquisition policy has a home.

Acquisition management and governance: Flip the concept of an oversight model on its
head.

SWAP Study Final Release, 3 May 2019 S103

DIB Guide: Detecting Agile BS

Agile is a buzzword of software development, and so all DoD software development projects
are, almost by default, now declared to be “agile.” The purpose of this document is to provide
guidance to DoD program executives and acquisition professionals on how to detect software
projects that are really using agile development versus those that are simply waterfall or spiral
development in agile clothing (“agile-scrum-fall”).

Principles, Values, and Tools

Experts and devotees profess certain key “values” to characterize the culture and approach of
agile development. In its work, the DIB has developed its own guiding maxims that roughly map
to these true agile values:

Agile value DIB maxim

Individuals and interactions over processes and | “Competence trumps process”
tools

Working software over comprehensive “Minimize time from program launch to deployment
documentation of simplest useful functionality”

Customer collaboration over contract negotiation | “Adopt a DevSecOps culture for software systems”

Responding to change over following a plan “Software programs should start small, be iterative,
and build on success — or be terminated quickly”

Key flags that a project is not really agile:

e Nobody on the software development team is talking with and observing the users of the
software in action; we mean the actual users of the actual code.'* (The PEO does not
count as an actual user, nor does the commanding officer, unless she uses the code.)

e Continuous feedback from users to the development team (bug reports, users
assessments) is not available. Talking once at the beginning of a program to verify
requirements doesn’t count!

e Meeting requirements is treated as more important than getting something useful into
the field as quickly as possible.

e Stakeholders (dev, test, ops, security, contracting, contractors, end-users, etc.)'® are
acting more-or-less autonomously (e.g., ‘it's not my job.”)

e End users of the software are missing-in-action throughout development; at a minimum
they should be present during Release Planning and User Acceptance Testing.

14 Acceptable substitutes for talking to users: Observing users working, putting prototypes in
front of them for feedback, and other aspects of user research that involve less talking.
15 Dev is short for development, ops is short for operations

SWAP Study Final Release, 3 May 2019 S104

e DevSecOps culture is lacking if manual processes are tolerated when such processes
can and should be automated (e.g., automated testing, continuous integration,
continuous delivery).

Some current, common tools in use by teams using agile development (these will change as
better tools become available):1¢

e Git, ClearCase, or Subversion - version control system for tracking changes to source
code. Git is the de facto open source standard for modern software development.

e BitBucket or GitHub - Repository hosting sites. Also provide issues tracking, continuous
integration “apps” and other productivity tools. Widely used by the open source
community.

e Jenkins, Circle Cl or Travis CI - continuous integration service used to build and test
BitBucket and GitHub software projects

e Chef, Ansible, or Puppet - software for writing system configuration “recipes” and
streamlining the task of configuring and maintaining a collection of servers

e Docker - computer program that performs operating-system-level virtualization, also known as
“containerization”

Kubernetes or Docker Swarm for Container orchestration
Jira or Pivotal Tracker - issues reporting, tracking, and management

Graphical version:

DevSecOps :
Technology Stack
Git"llb PLAN puppet
i X v L.
JIRA DEVELOP °
s ccues
Maven W e
——— sok
. Nagios'
iiNexus Maven s‘ﬂunk #
cucumber® O New Relic
|Unit@

. mrgpe Do Contaings and Cortained Management YNGR
nessus @ @ : ker O,m\ -
ForTey @ owin ‘ doc

<m‘ e A\ Azure
a e kubernetes

W mataaraces

Questions to Ask Programming Teams

16 Tools listed/shown here are for illustration only: no endorsement implied.

SWAP Study Final Release, 3 May 2019 S105

e How do you test your code? (Wrong answers: “we have a testing organization,” “OT&E
is responsible for testing”)

o Advanced version: what tool suite are you using for unit tests, regression testing,
functional tests, security scans, and deployment certification?

e How automated are your development, testing, security, and deployment pipelines?

o Advanced version: what tool suite are you using for continuous integration (ClI),
continuous deployment (CD), regression testing, program documentation; is your
infrastructure defined by code?

e Who are your users and how are you interacting with them?

o Advanced version: what mechanisms are you using to get direct feedback from
your users? What tool suite are you using for issue reporting and tracking? How
do you allocate issues to programming teams? How to you inform users that their
issues are being addressed and/or have been resolved?

e What is your (current and future) cycle time for releases to your users?

o Advanced version: what software platforms to you support? Are you using

containers? What configuration management tools do you use?

Questions for Program Management

e How many programmers are part of the organizations that owns the budget and
milestones for the program? (Wrong answers: “we don’t know,” “zero,” “it depends on
how you define a programmer”)

e \What are your management metrics for development and operations; how are they used
to inform priorities, detect problems; how often are they accessed and used by
leadership?

e What have you learned in your past three sprint cycles and what did you do about it?
(Wrong answers: “what’s a sprint cycle?,” “we are waiting to get approval from
management”)

e \Who are the users that you deliver value to each sprint cycle? Can we talk to them?

(Wrong answers: “we don’t directly deploy our code to users”)

Questions for Customers and Users

e How do you communicate with the developers? Did they observe your relevant teams
working and ask questions that indicated a deep understanding of your needs? When is
the last time they sat with you and talked about features you would like to see
implemented?

e How do you send in suggestions for new features or report issues or bugs in the code?
What type of feedback do you get to your requests/reports? Are you ever asked to try
prototypes of new software features and observed using them?

e What is the time it takes for a requested feature to show up in the application?

Questions for Program Leadership
e Are teams delivering working software to at least some subset of real users every
iteration (including the first) and gathering feedback? (alt: every two weeks)

SWAP Study Final Release, 3 May 2019 S106

e Isthere a product charter that lays out the mission and strategic goals? Do all members
of the team understand both, and are they able to see how their work contributes to

both?
e |s feedback from users turned into concrete work items for sprint teams on timelines

shorter than one month?
Are teams empowered to change the requirements based on user feedback?

Are teams empowered to change their process based on what they learn?
Is the full ecosystem of your project agile? (Agile programming teams followed by linear,
bureaucratic deployment is a failure.)

For a team working on agile, the answer to all of these questions should be “yes.”

Graphical version:

Are teams
delivering working
software to real users

every iteration (incl. the
first) and gathering

Are teams
empowersd to
change their process

based on what
they learmn?

Are teams
aempoweared to
change the
requireameants
based on user
feedback?

product charter
laying out the mission
strategic goals? Do all mem-
bers of the team under-
stand how they
contribute?,

MNo MNo

full ecosystem
of your project agile?
(Agile programming teams
followed by linear,

bureaucratic de-
loyment is a

from users turned
into concrete work
items for sprint teams on
timelines shorter
than one maonth?

No

More information on some of the features of DoD software programs are included in the DIB’s
“Ten Commandments of Software,” the DIB’s “Metrics for Software Development,” and the DIB’s

“Do’s and Don’ts of Software.”

SWAP Study Final Release, 3 May 2019 S107

Is Your Development Environment Holding You Back?
A DIB Guide for the Acquisition Community

A strong software development team is marked by some common attributes, including the use
of practices, processes, and various tools.

An effective team starts with clear goals. The entire software team should have a clear
sense of the project’s goals and the value they seek to provide “the client.” The goals should be
translated into specific objectives, which may be measured in terms of agreed-upon key
performance indicators (KPIs) or other frameworks. An effective development environment is
one designed to deliver value toward those goals. (This KPI-driven paradigm should not be
seen as an invitation to reprise an extended debate about requirements.)

Technical practices and processes that enable a development environment to deliver
value toward those goals include:

e Organization of activities through discrete “user stories” that can be broken down into
smaller components and continually prioritized by the product owner

e Relatively short “sprints” (often two weeks), each ending in a retrospective, that enable
measurement and learning throughout the process

e Blameless postmortems that allow for maximum learning and speedy recovery from
failures
Automated testing, security, and deployment
Testing (including user testing) and security should be shifted to the left and be part of
the day-to-day operations within the development teams

e Continuous integration, in which developers integrate code into a shared repository
several times a day, and check-ins are then verified by an automated build for early
problem detection

e Continuous delivery or continuous deployment, in which the software is seamlessly
deployed into staging and production environments

e Trunk-based development, in which team members work in small batches and develop
off of trunk or master, rather than long-lived feature branches
Version control for all production artifacts including open source and third party libraries
Infrastructure as code: version control for all configuration, networking requirements,
container orchestration files, continuous integration/continuous delivery (CI/CD) pipeline
files
Ability to execute A/B testing and canary deployments
Ability to get rapid and continuous user feedback and to test new features with users
throughout the development process

Effective teams will practice continuous delivery, in which teams deploy software in short cycles,
ensuring that the software can be reliably released at any time. Continuous deployment can be
measured by a team’s ability to achieve the following outcomes:
e Teams can deploy on-demand to production or to end users throughout the software
delivery life cycle.

SWAP Study Final Release, 3 May 2019 S108

e [ast feedback on the quality and deployability of the system is available to everyone on
the team, and people make acting on this feedback their highest priority.

Specific measures that will help you gauge if your development environment is working as it
should include development frequency; lead time for changes; time to restore service after
outage; and change failure rate (rollback deployed code). These questions and data, borrowed
from the 2017 State of DevOps Report from DORA, can help assess where your teams stand:

How often does your organization
deploy code?

(multiple deploys
per day)

High Medium Low
performance performance performance
Deployment frequency On demand Between once | Between once

per week and
once per month

per week and
once per month

Lead time for changes

What is your lead time for changes
(i.e., how long does it take to go from
code-commit to code successfully
running in production)?

Less than one
hour

Between one
week and one
month

Between one
week and one
month*

Mean time to recover (MTTR)
How long does it generally take to
restore service when a service
incident occurs (e.g., unplanned
outage, service impairment)?

Less than one
hour

Less than one
day

Between one
week and one
day

Change failure rate

What percentage of changes results
either in degraded service or
subsequently requires remediation
(e.g., leads to service impairment,
service outage, requires a hotfix,
rollback, fix forward, patch)?

0-15%

0-15%

31-45%

* Low performers were lower on average (at a statistically significant level), but had the same median as the medium

performers (2017 DevOps Report)

There is no exact set of tools that indicate that your development environment is working as it
should, but the use of some tools will often indicate that the practices and processes above are

in place. You commonly see effective software teams using:

e An issue tracker, like Jira or Pivotal Tracker

e Continuous integration and/or continuous integration/continuous delivery (CI/CD) tools,
like Jenkins, Circle ClI, or Travis CI
Automated build tools, like Maven, Grable, Cmake, and Apache Ant
Automated testing tools, like Selenium, Cucumber, J-Unit

SWAP Study

Final Release, 3 May 2019

S109

https://puppet.com/resources/whitepaper/state-of-devops-report

A centralized artifacts repository, like Nexus, Artifactory, or Maven
Automated security tools for static and dynamic code analysis and container security,

like Sonarqube, OWASP ZAP, Fortify, Nessus, Twistlock, Aqua, and more.
Automation tools, like Chef, Ansible, or Puppet

Automated code review tools, like Code Climate
Automated monitoring tools, like Nagios, Splunk, New Relic, and ELK
Container and container orchestration tools like Docker, Docker Swarm, Kubernetes,

and more

O Bitbucket

=@

4 MsRuild My CMake

Maven &

)
Gradie

O i archiva

= MNexus Mavenr

cucurnb-or@
JUnit @

sonarcube (Fowsss
N{‘.'arsu:.@ Im
|FORTFY @ guan
CINTRAST 3y OperiiaS
B Twistlock ¢ " aqua

PLAN
&
DEVELOP

SECURE

DeviecOps
Technology Stack

0
circlect

B® Microsoft
¢ Bamboo

@ &

TG TeamCity

Container 2nd Container kanagement

*’-’docker

kubernetes

DEPLOY
&
OPERATE

MONITOR

~ puppet

SALTSTACK

ANSIBLE

g CHEF

[

sensu
=wk
ﬂa;i-r.ls'
splunk >
) New Relic.

ﬁ'_::.:.

AN GovCioud

=T

q Coogle
I\ Azure

amazon
S

Warning signs that you may have screwed up your development environment include:
e |f teams cannot effectively track progress toward defined goals and objectives roughly
every two weeks

e |f teams cannot rapidly deploy various environments that mirror production to test their
code such as in development, QA, and staging

e |f teams cannot have real-time feedback regarding their code building, passing tests,

and passing security scans

If it takes months for end users to be able to see changes and provide feedback
If teams cannot rapidly roll-back to previous versions or perform rolling-update to new

versions without downtime

If recovering from incidents results in significant drama or the assignment of blame
If having code ready to deploy is a big event (it should happen routinely and without

drama)

e If changes to the software frequently result in breaking it

SWAP Study

Final Release, 3 May 2019

S110

If developers are not empowered to change the code or build new functionality based on user
feedback, or to change their process based on what they learn.

SWAP Study Final Release, 3 May 2019 S111

Is Your Compute Environment Holding You Back?
A DIB Guide for the Acquisition Community

To enable software to provide a competitive advantage to the warfighter, DoD must adopt a
strategy for rapidly transitioning DoD IT to current industry standards. This modernization
agenda should include providing distributed databases and abundant computing power; making
bandwidth available as a platform; integrating mobile technologies; and developing DoD
platforms for downloading applications. This document outlines compute and infrastructure
capabilities that should be available to DoD programmers (and contractors) who are developing
software for national defense. The capabilities include:

1.

Scalable compute. Access to computing resources should never be a limiting factor
when developing code. Modern cloud environments provide mechanisms to provide any
developer with a powerful computing environment that can easily scale with the needs of
an individual programmer, a product development team, or an entire enterprise.

Containerization. Container technology provides sandbox environments in which to test
new software without exposing the larger system to the new code. It “packages up” an
application with all of the operating system services required for executing the
application and allowing that application to run in a virtualized environment. Containers
allow isolation of components (that communicate with each other through well-defined
channels) and provide a way to “freeze” a software configuration of an application
without freezing the underlying physical hardware and operating system.

Continuous integration/continuous delivery (CI/CD) pipeline (DevSecOps
platform). A platform that provides the CI/CD pipeline is used for automated testing,
security, and deployment. This includes license access for security tools and a
centralized artifacts repository with tools, databases, and a base operating system (OS)
with an existing authorization to operate (ATO).

Infrastructure as code: automated configuration, updating, distribution, and
recovery management. Manual configuration management of operating systems and
middleware platforms leads to inconsistencies in fielded systems and drives up the
operating costs due to the labor hours required for systems administration. Modern
software processes avoid this by implementing “infrastructure as code,” which replaces
manual processes for provisioning infrastructure with automated processes that use
machine-readable definition files to manage and provision containers, virtual machines,
networking, and other components. Adopting infrastructure as code and software
distribution tools in a standardized way streamlines uniformity of deployment and testing
of changes, which are both vital to realizing the benefits of agile development processes.

Federated identity management and authentication backend with common log file
management and analysis. Common identity management across military,
government, and contractors greatly simplifies the assignment of permissions for
accessing information across multiple systems and allows rapid and accurate auditing of

SWAP Study Final Release, 3 May 2019 S112

code. The ability to audit access to information across multiple systems enables the
detection of inappropriate access to information, and can be used to develop the
patterns of life that are essential for proper threat analysis. Common identity
management can ease the integration of multi-factor authentication across servers,
desktops, and mobile devices. Along with public key infrastructure (PKI) integration, it
allows verification of both the service being accessed by the user and the user
accessing information from the service.

6. Firewall configuration and network access control lists. Having a common set of OS
and application configurations allows network access control not just through network
equipment, but at the server itself. Pruning unnecessary services and forcing information
transfer only through intentional interfaces reduce the attack surface and make servers
more resilient against penetration. Server-to-server communication can be encrypted to
protect from network interception and authenticated so that software services can only
communicate with authorized software elements.

7. Client software. Remote login through remote desktop access is common throughout
DoD. This greatly increases the difficulty of integrating mobile platforms and of permitting
embedded devices to access vital information, especially from the field. It also
complicates uniform identity management and multi-factor verification, which is key to
securing information. By moving to web client access mobile integration - and
development - is greatly eased. It also becomes possible to leverage industry innovation,
as this is where the commercial sector is heading for all interactions.

8. Common information assurance (IA) profiles. Information assurance (IA) for DoD
systems is complex, difficult, and not yet well-architected. Test, certification, and 1A are
almost always linear “tailgate” processes instead of being integrated into a continuous
delivery cycle. Common IA profiles integrated into the development environment and
part of the development system architecture are less likely to have bugs than
customized and add-on solutions.

Desired State with Examples

Effective use of software requires sufficient resources for computing, storage, and
communications. Software development teams must be provided with abundant compute,
storage, and bandwidth to enable rapid creation, scaling, and optimization of software products.

Modern cloud computing services provide such environments and are widely available for
government use. In its visits to DoD programs, the DIB Software Acquisition and Practices
(SWAP) team has observed many programs that are regenerating computing infrastructure on
their own—often in a highly non-optimal way—and typically due to constraints (or perceived
constraints) created by government statutes, regulations, and culture. This approach results in
situations where compute capability does not scale with needs; operating systems cannot be
upgraded without upgrading applications; applications cannot be upgraded without updating the
operating systems; and any change requires a complete information assurance recertification.

SWAP Study Final Release, 3 May 2019 S113

Compute platforms are thus “frozen” at a point established early in the program life cycle, and
development teams are unable to take advantage of new tools and new approaches as they
become available. The DIB SWAP team has noted a general lack of good tools for profiling code,
maintaining access and change logs, and providing uniform identity management, even though
the DoD has system-wide credentials through Common Access Control (CAC) cards.

It would be highly beneficial to create common frameworks and/or a common set of
platforms that provide developers with a streamlined or pre-approved Authority to
Operate (ATO). Use of these pre-approved platforms should not be mandated, but they create
cost and time incentives by enabling more consolidated platforms. DoD could make use of
emerging government cloud computing platforms or achieve similar consolidation within a DoD-
owned data center (hybrid cloud). DoD should move swiftly from a legacy data center approach
to a cloud-based model, while taking into account the lessons learned and tools and services
available from commercial industry, with assumed hardware and operating system updates
every 3-5 years.

Warning signs

Some indicators that you may have screwed up your compute environment include:

Your programmers are using tools that are less effective than what they used in school
The headcount needed to support the system grows linearly with the number of servers
or instances

e You need system managers deployed with hardware at field locations because it is
impossible to configure new instances without high skill local support

e You have older than current versions of operating systems or vendor software because it
is too hard to test or validate changes

e Unit costs for compute, network transport and storage are not declining, or are not
measurable to be determined
Logging in via remote desktop is the normal way to access an information service
You depend on network firewalls to secure your compute resource from unauthorized
access
You depend on hardware encryptors to keep your data safe from interception
You have to purge data on a regular basis to avoid running out of storage
Compute tasks are taking the same or longer time to run than they did when the system
was first fielded

e Equipment or software is in use that has been “end of lifed” by the vendor and no longer
has mainstream support

e |t takes significant work to find out who accessed a given set of files or resources over a
reasonable period of time

e No one knows what part of the system is consuming the most resources or what code
should be refactored for optimization
Multifactor authentication is not being used
You cannot execute a disaster recovery exercise where a current backup up of a system
cannot be brought online on different hardware in less than a day

SWAP Study Final Release, 3 May 2019 S114

Getting It Right

These capabilities should be available to all DoD programmers and contractors developing
software for national defense:

Scalable compute

Modern compute architectures

Environments that make transitions across cloud and local services easy

Graphics Processing Unit (GPU)- and ML-optimized compute nodes available for
specialized tasks

Standardized storage elements and ability to expand volumes and distribute them based
on performance needs

Standardized network switching options with centralized image control

Property management tagging—no equipment can be placed in a data center without
being tagged for inventory and tracked for End of Life support from vendors

Supply chain tracking for all compute elements

Containerization

Software deployment against standard profile OS image

Containers can be moved from physical to cloud-based infrastructure and vice versa
Applications and services run in containers and expand or contract as needed

OS updates separated from application container updates

Centralized OS patch validation and testing

Containers can be scaled massively horizontally

Containers are stateless and can be restarted without impact

Configuration management for deployment and audit

Continuous integration/continuous delivery (CI/CD) pipeline (DevSecOps platform)

Select, certify, and package best of breed development tools and services

Can be leveraged across DoD Services as a turnkey solution

Develop standard suite of configurable and interoperable cybersecurity capabilities
Provide onboarding and support for adoption of Agile and DevSecOps

Develop best-practices, training, and support for pathfinding and related activities
Build capability to deliver a Software Platform to the Defense Enterprise Cloud
Environment

Self-service portal to selectively configure and deliver software toolkit with pre-
configured cybersecurity capabilities

Infrastructure as code: automated configuration, updating, distribution and recovery
management

Ability to test changes against dev environments

Standardized profiling tools for performance measurement

Centralized push of patches and updates with ability for rapid rollback

Auditing and revision control framework to ensure proper code is deployed and running
Ability to inject faults and test for failover in standardized ways

SWAP Study Final Release, 3 May 2019 S115

Disaster recovery testing and failover evaluation

Utilization tracking and performance management utilities to predict resource crunches
Standardized OS patch and distribution repositories

Validation tools to detect manual changes to OS or application containers with alerting
and reporting

Federated identity management and authentication backend with common log file
management and analysis

Common identity management across all DoD and contractors

Common multifactor backends for authentication of all users along with integration of
LDAP/Radius/DNS or active directory services

Integrated PKI services and tools for automated certificate installation and updating
Common DRM modules that span domains between DoD/contractors and vendor
facilities that can protect, audit and control documents, files, and key information. All
encrypted at rest, even for plain text files.

Useful for debugging and postmortem analysis

Develop patterns of life to flag unusual activity by users or processes

Automated escalation to defensive cyber teams

Firewall configuration and network access control lists

Default configuration for containers is no access

Profiles for minimal amounts of ports and services being open/run

All network communications are encrypted and authenticated, even on the same
server/container

Client software

Web-based access the norm, from desktops/laptops as well as mobile devices

Remote login used as a last resort - not as the default

Security technical implementation guides (STIGs) for browsers and plugins, as well as
common identity management at the browser interface (browsers authenticate to servers
as well as servers authenticating to browsers)

Minimal state kept on local hardware - purged at end of session

Common information assurance (IA) profiles

Enforces data encrypted in flight and at rest

Software versions across DoD with automated testing

Application lockdowns at the system level so only authorized applications can run on
configured systems

“Makefile” to build configurations from scratch from base images in standardized
approved configurations

Use of audit tools to detect spillage and aid in remediation (assisted via DRM

SWAP Study Final Release, 3 May 2019 S116

SWAP Program Visits: Questions and Observations

Programs Reviewed

Reviewed 6 programs to date:

Next Generation fighter jet

Next Generation ground system
Kessel Run—AOC Pathfinder
Space tracking system

Naval radar system
Cross-service business system

What we hope to understand:

Why is the software the way it is?

How have you gone about developing and deploying it?

What constraints/obligations have you been under and what would be your
recommendations to change those?

Standard Questions

What is the coding environment and what languages/SW tools do you use?

What do the software and system architectures look like?

What is the computational environment (processing, comms, storage)?

How is software deployed and how often are updates delivered to the field?

What determines the cycle time for updates?

How does software development incorporate user feedback? What is the developer-user
interface? How quickly are user issues addressed and fixed?

How long does it take to compile the code from scratch?

How much access does the DoD have to the source code?

How is testing done? What tool suites are used? How much is automated? How long
does it take to do a full regression test?

How is cybersecurity testing done? How are programs/updates certified?

What does the workforce look like (headcounts, skill sets)? How many programmers?
How much software expertise is there in the program office?

What is the structure of the contract with the government? How are changes, new
features, and new ideas integrated into the development process?

Preliminary Observations

Software is being delivered to the field 2-10X slower than it could be due to outdated
requirements, test requirements, and lack of trust in SW

Many systems are using legacy hardware and outdated architectures that make it much
harder to exploit advances in computing and communications

SWAP Study Final Release, 3 May 2019 S117

e Program requirements were often formulated 5+ years ago (when the threat environment
+ available technologies were very different => wasted effort)

e New capabilities and features are added in multi-year (multi-decade?) development
“pblocks” instead of continuously and iteratively
Most program offices don’t have enough expertise in modern SW methods
Most SW teams are attempting to implement DevOps and “agile” approaches, but in
most cases the capabilities are still nascent (and hence fragile)

e Transition to DevOps is often hindered by a gov’t support structure focused on technical
performance in a waterfall setting (“waterfall with sprints”)
Information assurance (IA) is complex, difficult, and not yet well architected
Test, certification and 1A are almost always linear “tailgate” processes instead of being
integrated into a continuous delivery cycle.

What should be done differently in future programs?

Spend time upfront getting the architecture right: modular, automated, secure

Make use of platforms (hardware and software) that continuously evolve at the

timescales of the commercial sector (3-5 years between HW/OS updates)

Start small, be iterative, and build on success — or terminate quickly

Construct budget to support the full, iterative life cycle of the software

Adopt a DevOps culture: design, implement, test, deploy, evaluate, repeat

Automate testing of software to enable critical updates to be deployed in days to weeks,

not months or years (also requires changes in testing organization)

e Have a local team of DoD software experts who are capable of modifying or extending
the software through source code or APl access

e Separate development of mission level software from development of IA-accredited
platforms

SWAP Study Final Release, 3 May 2019 S118

How to Justify Your Budget When Doing DevSecOps

As we transition software development from big spiral programs into DevSecOps, program
managers will have to wrestle with using new practices of budget estimation and justification,
while potentially being held to old standards that should no longer apply. In addition to all of the
regular challenges of retaining a budget allocation (budget reviews, audits, potential reductions
and realignment actions, all many times a year), defending a budget for a DevSecOps acquisition
requires additional explanation and justification because those charged with oversight—whether
inside the Department or in Congress—have come to expect specific information on a tempo that
doesn’t make sense for DevSecOps projects. Program managers leading DevSecOps projects
therefore must not only do the hard work of leading agile teams toward successful outcomes, but
also create the conditions that allow those teams to succeed by convincing cost assessors and
performance evaluators to evaluate the work differently. Fortunately, commercial industry already
has best practices for budget estimation and justification for DevSecOps and that DoD should
follow industry approaches rather than create new ones

This DIB Guide is intended to help with this challenge. It seeks to provide guidelines and
approaches to help program managers of DevSecOps projects!’ interact with those cost
assessors and performance evaluators through the many layers of review and approval
authorities while carrying out their vital oversight role. This guide should help with projects where
the development processes is optimized for software rather than hardware and where most key
stakeholders are aligned around the goal of providing needed capability to the warfighter without
undue delay.

Questions that we attempt to answer in this concept paper:
1. What does a well-managed software program look like and how much should it cost?
2. What are the types of metrics that should be provided for assessing the cost of a proposed
software program and the performance of an ongoing software program?
How can a program defend its budget if the requirements aren’t fixed or are changing?
How do we estimate costs for “sustainment” when we are adding new features?
5. Why is ESLOC (effective source lines of code) a bad metric to use for cost assessment
(besides the obvious answer that it is not very accurate)?

kW

What does a well-managed DevSecOps program look like and how much should it cost?

The primary focus for DevSecOps programs is about regular and repeatable, sustainable delivery
of innovative results on a time-box pattern, not on specifications and requirements without
bounding time (Figure 1). The fixed-requirements spiral-development spending model has
created program budgets that approach infinity. DevSecOps projects, on the other hand will be
focused on different activities at different stages of maturity. In a DevSecOps project,
management should be tracking services and measuring the results of working software as the
product evolves, rather than inspecting end items when the effort is done, as would be expected

17 Not all software is the same; we focus here only on software programs using or transitioning to
DevSecOps.

SWAP Study Final Release, 3 May 2019 S119

in a legacy model. Software is never done and not all software is the same, but generally the work
should look like a steady and sustainable continuum of useful capability delivery.

Performance Cost Schedule
4 Fixed >
. M) Agile/DevSecOps
Traditional Driven .
Pro Plan Continuous
grams L . .
Driven Flexible Engineering
< >
Cost Schedule Performance

Figure 1. Value Driven Iron Triangle (Carnegie Mellon University, Software Engineering Institute).

e During the creation phase, program managers will most likely decide to adopt Agile based
on criteria that fits their design challenge (e.g., software dependent). They would also be
motivated to build their products on top of widely used software platforms that are
appropriate for the technical domain at hand (e.g., embedded vs. web applications).
During this phase team also establishes base capability and what they consider a
minimum viable product (MVP).18 This is where all programs start and many should end.
Starting small and incrementing is not only the right way to do software, but it is also a
great way to limit financial exposure. A key tenet of agile development is learning early
and being ready to shift focus to increase the likelihood for success.

e During the scaling phase, the entire team (industry and government) commit and learn
how to transition to appropriate agile activities that are optimizing for implementing
DevSecOps for the project. This should focus the team on transitioning to a larger user
base with improved mechanisms for automated testing (including penetration testing), red
team attacks, and continuous user feedback. A key management practice in agile
development is to keep software projects to a manageable size. If the project requires
more scope, divide the effort into modular, easily connected chunks that can be managed
using agile methods and weave the pieces together in implementation.

e Once into implementation, a well-managed program should have a regular release
cadence (e.g., for IT projects every 2-3 weeks, while safety-critical products could run a
bit longer, 3-4 weeks). Each of these releases delivers small increments of software that
are as intuitive to use as possible and directly deployable to actual users. DevSecOps
programs move from small successes into larger impacts.

With allowances made for different sizes of project, DevSecOps should share certain
characteristics, including:

e An observer should easily find an engaged program office, as well as development teams
that are small (5-11 people), and well connected to one another through structured
meetings and events (a.k.a. “ceremonies”).

18 The MVP should not be overspecified since the main goal is getting the MVP into the hands of users for
feedback.

SWAP Study Final Release, 3 May 2019 S120

e A set of agile teams work on cross-functional capabilities of the system and include a
planning team and a system architecture team.

e The teams should have frequent interaction with subject matter experts and users from
the field or empowered product owners. Active user engagement is a vital element of an
Agile approach, but getting actual users (not just user representatives) to participate also
needs to be a managed cost that the program needs to plan for.

e The project should have a development environment that supports transparency of the
activities of the development teams to the customer. Maximal automation of reporting is
the norm for commercial development and should be for DoD programs as well.

e The program should include engaged test and certification communities who are deeply
involved in the early stages (i.e., who have “shifted left”) and throughout the development
process. Not just checkers at the end of that process. They would help design and validate
the use of automation and computer-assisted testing/validation tools whenever possible
as well.

e Capability should also be delivered in small pieces on a continuing basis—as frequently
as every two weeks for many types of software (see the DIB’s Guide to Agile BS).

The cost of a program always depends on the scale of the solution being pursued, but in an agile
DevSecOps project, the cost should track to units of 5-11-person cross-functional team (team
leader, developers, testers, product owners, etc.) with approximately 6—11 teams making up a
project. If the problem is bigger than that, the overall project could be divided up into related
groups of teams. A reliance on direct interaction between people is another central element of
Agile and DevSecOps; the communication overhead means that this approach loses
effectiveness with too many people in a team (typically 5-11 cross-functional members). Also,
groups of teams have difficulty scaling interactions when the number of teams gets too large (less
than twelve). A team-of-teams approach will allow scaling to fit the overall scope. Organizing the
teams is also a valuable strategy where higher level development strategies and system
architectures get worked out and the lower level teams are organized around cross-domain
capabilities to be delivered. Cost incentives for utilizing enterprise software platform assets should
be so attractive, and the quality of that environment so valuable, that no program manager would
reasonably decide to have his/her contractor build their own.

Here are some general guidelines for project costs when pursuing a DevSecOps approach:

e Create: deliver initial useful capability to the field within 3-6 months (the use of
commodity hardware and rapid delivery to deployment). If this cannot be achieved, it
should be made clear that the project is at risk of not delivering and is subject to being
canceled. Outcomes and indicators need to be examined for systematic issues and
opportunities to correct problems. Initial investment should be limited in two ways: 1) in
size to limit financial exposure and 2) in time to no more than 1 year.

e Scale: deliver increased functionality across an expanding user base at decreasing unit
cost with increased speed. Investment should be based on the rate limiting factors of
time and talent, not cost. Given a delivery cycle and the available talent, the program
should project only spending to the staffing level within a cycle.

SWAP Study Final Release, 3 May 2019 S121

e Good agile management is not about money, it is about regular and repeated deliver.
That is to say, it is about time boxing everything. Releases, staffing, budget, etc. Nick,
strongly recommend that you rework this to reflect time boxing as the most important
aspect of “defending your agile budget.

e Optimize: deliver increased functionality fixed or decreasing unit cost (for a roughly
constant user base). Investment limit should be less than 3 project team sets?.

What are the types of metrics that should be provided for assessing the cost of a proposed
software program and the performance of an ongoing software program?

Assessing the cost of a proposed software program has always been difficult, but can be
accomplished by starting one or more set of project teams at a modest budget (1-6 sets of teams)
and then adjusting the scaling of additional teams (and therefore the budget) based on the value
those teams provide to the end user. It may be necessary to identify the size of the initial team
required to deliver the desired functions at a reasonable pace and then price the program as the
number of teams scales up. The DIB recommends that program managers start small, iterate
quickly, and terminate early. The supervisors of program managers (e.g., PEOs) should also
reward aggressive early action to shift away from efforts that are not panning out into new
initiatives that are likely to deliver higher value. Justifying a small budget and getting something
delivered quickly is the best way to provide value (and the easiest way to get and stay funded).

The primary metric for an ongoing program should be user satisfaction and operational impact.
This can be different for every program and heavily depends on the context. The challenge, and
therefore the responsibility of the PM then is to define mission relevant metrics to determine
achieved and delivered value. Examples could include, personnel hours saved, number of objects
tracked or targeted, accuracy of the targeting solution, time to first viable targeting solution,
number of sorties generated per time increment, number of ISR sensors integrated, etc. Other
key metrics that are often advocated by agile programs (inside and outside of DoD) include:

e deployment frequency (Is the program getting increments of functionality out into
operations?),
lead time (how quickly can the program get code into operation?),
mean time to recover (how quickly can the program roll back to a working version, if
problems are found in operation?), and

e change fail rate (rate of failures in delivered code).

These four break down into two process metrics (release cadence and time from code-commit to
release candidate, and two are quality metrics (change fail rate and time to roll back). In addition,
each project should also have 3-5 key value metrics that are topical to the solution space being
addressed. Metrics must be available both to the teams and the customer so they can see how
their progress compares to the projected completion rate for delivering useful functionality. A key
reason for Government access to those metrics is for supporting the real-time tracking of progress
and prediction of new activities in the future. The biggest difference between a DevSecOps

19 Average of 8 people per team with an average of 8 teams per project.

SWAP Study Final Release, 3 May 2019 S122

program and the classic spiral approach is that the cadence of information transparency between
the developers and the customer is, at slowest, weekly, but if properly automated, should be
instantly and continuously available.. Quality metrics and discovery timelines (such as defects
identified early in development versus bugs identified in the field) can also be used to evaluate
the maturity of a program. This kind of oversight enables fast and effective feedback before the
teams end up in extremis, or set up unrealistic expectations.

Software projects should be thought of as a fixed cadence of useful capability delivery where the
“backlog” of activities are managed to fit the “velocity” of development teams as they respond to
evolving user needs. Data collected on developers inside of the software development
infrastructure can be provided continuously, instead of packaged into deliverables that cannot be
directly analyzed for concerns and risks.

The DIB’s “Metrics for Software Development” provide a set of metrics for monitoring
performance:

Time from program launch to deployment of simplest useful functionality.

Time to field high priority functions (spec — ops) or fix newly found security holes
Time from code committed to code in use

Time required for regression tests (automated) and cybersecurity audit/penetration tests
Time required to restore service after outage

Automated test coverage of specs/code

Number of bugs caught in testing vs field use

Change failure rate (rollback deployed code)

. Percentage of code available to DOD for inspection/rebuild

10. Complexity metrics

11. Development plan/environment metrics

©oNoGOr~wDNE

These data provide management flexibility since data about implementation of capability can be
made during development—instead of at a major milestone review or after “final” delivery, when
changing direction comes at a much higher cost and schedule impact. So data collection and
delivery must be continuous as well. Another note, these metrics are recommendations and not
intended to be prescriptive. Use what fits your program. Not all of these may be required.

An additional pair of overarching key metrics are headcount and expert talent available. If the
project headcount is growing, but delays are increasing,, aggressive management attention is
called for. The lack of expert talent also increases risks of failure.

How can a program defend its budget if the requirements are not fixed years in advance,
or are constantly changing?

It is relatively easy to defend changing capability by making changes to the software of

existing systems, as compared to starting up a new acquisition. Software must evolve with

the evolving needs of the customers. This is often the most cost effective and rapid way to
respond to new requirements and a changing threat landscape. A new approach to funding

the natural activities of continuous engineering and DevSecOps requires a system that can
prioritize new features and manage these activities as dependent and tightly aligned in time

SWAP Study Final Release, 3 May 2019 S123

(see Figure 1). A continuous deployment approach is needed for delivering on the evolving

needs culled from user involvement combining R&D, O&M, Procurement, and Sustainment

actions within weeks of each other, not years (see Figure 2). Great software development is
an iterative process between developers and users that see the results of the interaction in

new capability that is rapidly put in their hands for operational use.

Prioritize and Adjust to New Discoveries, Threats and Opportunities
Continuum of Development and Delivery to Operations

A

Cost

Releases
A A r 3

Cos

Think, Architect, Prototype

v

Incremental Continuous Depricate/
Team Scaling Engineering Retire/Replace

Figure 2. Continuous Delivery of Modular Changes to Working Software (Carnegie Mellon
University, Software Engineering Institute).

Elements to address include in budget justification and management materials:

DevSecOps programs have to be at least as valuable and urgent to fund as a classic DoD
spiral program in the hyper-competitive budget environment. Over time, DoD will realize
that the DevSecOps approach is inherently more valuable. However, time is of the
essence. It must be acknowledged that the current waterfall approach is no longer serving
us well in the area of software. The mainstream software industry has already made the
move to agile ten years ago and the methods are rigorously practices and proven valuable.
The classic approach of doing cost estimates of designs based on fixed requirements has
always been wrong, even when accounting for intended capability growth because the
smart adversaries get a continuous vote on the threat environment. Accurate prediction of
a rapidly changing technology environment and solution methods only exacerbate the
unknowns of product development outcomes.

DevSecOps programs have requirements, but start out at a higher level and use a
disciplined approach to continuously change and deliver greater value.

DIB’s “Ten Commandments of Software” calls for the use of shared infrastructure and
continuous delivery, which will reduce the cost of infrastructure and overhead, thus freeing
up capital to advance unique military capability.

Data available above the program manager’s level has been insufficient for cost and
program evaluation communities to assess software projects. However, the reporting of
metrics that are a natural consequence of using DevSecOps approaches should be
automated to provide transparency and rapid feedback.

The benefits of this approach are manifold. It allows for thoughtful rigor up front and early and the
rapid abandonment of marginal or failure-prone approaches early in the design cycle before large

SWAP Study Final Release, 3 May 2019 S124

investments are sunk. Details are allowed to evolve. More stable chunks of capability are defined
at the “epic” level and a stable cadence of engineering and design pervades the life cycle. Under
this operational concept, testing is performed early, during the architecture definition stage and
continuously as new small deployments of functionality are delivered to the user. The identification
of budget is redistributed as value is provided and validated for warfighting impact. A closer
alignment of flexible requirements and budget allocation/ appropriation will be necessary in order
to ensure that the national defense needs and financial constraints are continuously managed.

Continuous access to design and delivery metrics will illuminate developer effectiveness, user
delight, and the pace of delivery for working code to include analytical data for in-stride oversight
and user/programmatic involvement This will replace the standard practice of document-based
deliverables and time-late data packages that take months to develop and are not current when
provided.

The way that DoD has classically managed these activities is to break them up into different
“colors of money” associated with hardware-centric phases (see Figure 3). This places an atrtificial
burden on excellence in software. Rapid and continuous delivery of working code requires
addressing these different types of requirements within shorter time-horizons than is natural for
the existing federal budgeting process.

A
Life-Cycle

v

4
4

Operating and Support Cost

Cost

Investment Cost
Research and

Development Cost
Disposal Cost

[| [| Disposal

L | Operations and Phase
Production and Support Phase
Deployment Phase

Engineering/Manufacturing
Development Phase

Demonstration/
Validation Phase

Concept Exploration/
Definition Phase

Figure 3. Notional DoD Weapon System Cost Profile (Defense Acquisition University).

In addition, the classic approach of developing detailed technical requirements far in advance of
performing product design needs to be replaced. The new paradigm must begin with an
architecture that will support the requirements and scale associated with needs for future
compatibility (e.g., modularity security, or interoperability). Also, using an agile approach, a
program can incorporate the best available technologies and methods throughout the entire life

SWAP Study Final Release, 3 May 2019 S125

cycle and avoid a development cycle is longer than the useful life of the technology it is built on.
Getting these things wrong is not recoverable. Establishing detailed requirements over a period
of years before beginning, to be followed by long development efforts punctuated by major design
reviews (i.e., Software Requirements Review, Preliminary Design Review, Critical Design Review,
Test Readiness Review, Production Readiness Review) that require a span of years between
events are inherently problematic for software projects for at least two reasons. First, these review
events are designed around hardware development spirals that are time-late and provide little in
the way of in-stride knowledge of software coding activities that can be used to aid in real-time
decision making. Second, development teams are in frequent contact with users and adjusting
requirements as they go, which up-ends the value of major design reviews that are out of cadence
with the development teams. DevSecOps implementation methods such as feature
demonstrations and cycle planning events provide much more frequent and valuable information
on which program offices can engage to make sure the best value is being created.

Defending a budget has to be done in terms of providing value. Different programs value different
things—increasing performance, reducing cost, minimizing the number of humans-in-the- loop—
so there is no one size fits all measure. But in an agile environment, knowing what to measure to
show value is possible because of the tight connection to the user/warfighter. Those users are
able to see the value they need because they are able to evaluate and have an impact on the
working software. This highlights the need to collect and share the measures that show
improvement against a baseline in smaller increments.

How do we do cost for “sustainment” when we are adding new features?

The first step is to eliminate the concept of sustaining a fixed base of performance. Software can
no longer be thought of as a fixed hardware product like a radar, a bomb, or a tank. That leads to
orphaned deployments that need unique sustainment and a growth of spending that does not
deliver new functionality (see Figure 4).

A

Sustainment Cost
10.4 Sustainment Ends up
_ Exceeding New
10.3 Sustainment Feature Cost
10.2 Sustainment

10.1 Sustainment

Build 10.1 Build 10.2 Build 10.3 Build 10.4 PRPIPS Build n

v

Figure 4. Layers of Sustainment to Manage Unigque Deployments

Software can continue to evolve and be redeployed for comparatively little cost (see Figure 2).
Users continue to need and demand greater performance and improved features, if for no other
reason than to retain parity with warfighting threats. Also internal vulnerabilities and environmental
updates must be continuously deployed to support ever improving cyber protections. The most
secure software is the one that is most recently updated. Lastly, new capabilities for improved
warfighting advantage are most often affordably delivered through changes to fielded products.

SWAP Study Final Release, 3 May 2019 S126

Software development is a very different way of delivering military capability. It should be
considered more like a service of evolving performance. When new features are needed, they get
put in the backlog, prioritized, and scheduled for a release cycle (see Figure 5). If the program is
closer to providing satisfactory overall performance, then the program can dial down to the
minimum level needed to satisfy the users and keep the environment and applications cyber-
secure. It can be thought of as recursive decisions on how many (software) “squadrons” are
required for our current mission set and then fund those teams at the needed staffing level to
create, scale, or optimize the software (depending on the stage of continuous development).
Because these patterns can be scaled up and down by need in a well-orchestrated way, new
contracting models are available that might not have been used in the past. For example, fixed
price contracts for a development program was strongly discouraged, but under this model, where
schedule and team sizes are managed and capability is grown according to a rigorous plan
(Figure 1), a wider array of business, contracting and remuneration models can be explored.

oW

''''''''''' Threats
et TN ***t+e.... RELEASE2 _....-*" Threats | Tte.., Opportunities

) New
Discovery

Threats Opportunities

Opportunities Threats ~ Opportunities New Threats ~ Opportunities
Discovery
New
Discovery

Prioritize and Adjust to New Discoveries, Threats and Opportunities
Continuum of Development and Delivery to Operations

Figure 5. Release Cycle With New Opportunities, Discoveries and Response to Threats (Carnegie
Mellon University, Software Engineering Institute).

Two financial protections built into acquisition laws and regulations need to be reexamined in the
light of software being continuously engineered, vice sustained: Nunn-McCurdy and the Anti-
Deficiency Act. The continuous engineering pipeline will continue to push out improved capability
until the code base is retired. While Nunn-McCurdy is a valid constraint for large hardware
acquisitions, it does not apply to software efforts. In a similar vein, software should also never
trigger the Anti-Deficiency Act - just like keeping a ship full of fuel, or paying for air-traffic
controllers; we know we are going to be doing these things for a long time. To build a ship that
will need fuel for 40 years does not invoke the ADA. Therefore, starting a software project that
will incrementally deliver new functionality for the foreseeable future should not do so either.

Why is ESLOC a bad metric to use for cost assessment?

The thing we really want to estimate and then measure is the effort required to develop, integrate,
and test the warfighting capability that is delivered by software. SLOC might have been a used
as a surrogate for estimating the effort required, but it has never been accurate. Not all software
is the same, not all developers are the same, and not all development challenges use the same
approaches to reduce problems into solutions. For example, in a project there may things like

SWAP Study Final Release, 3 May 2019 S127

https://www.acq.osd.mil/fo/docs/Kendall%20Use%20of%20Fixed-Price%20Incentive%20Firm%20(FPIF).pdf

detailed algorithms that require deep expertise and detailed study to properly implement small
amounts of code, running alongside large volumes of automatically generated code of relatively
trivial complexity. Many different levels of effort are needed to create a line of code that will deliver
military capability, and estimations of source code volume is an inherently problematic and error-
filled approach to describing the capability thus produced. That's why DevSecOps efforts use
measures of relative effort like story points to communicate across a particular set of teams how
much effort it will take to turn a requirement into working software that meets an agreed upon
definition of done within a set cadence of activity. Because these story points are particular to a
specific team, they do not accurately transition to generally prescribable measures of cost.

Estimating by projecting the lines of code starts the effort from the end and works backwards.
SLOC is an output metric (something to know when the job is done—akin to predicting what size
clothing your child will wear as an adult). It does not capture the human scale of effort. Traditional
models like COCOMO or SEER attempt to use a variety of parameters in their models to capture
things like formality, volatility, team capabilities, maturity and others. However, these surrogates
for effort have well documented error sources and have failed time and again to accurately capture
the cost of executing a software program. There are also inherent assumptions built into these
models that are obviated by performing agile development of capability models running on a
software platform.

In the beginning stages of DoD’s transformation to DevSecOps methods, the development and
operations community will need to work closely with the cost community to derive new ways of
predicting how fast capability can be achieved. For example, estimating how many teams worth
of effort will be needed to invest in a given period of time to get the functionality needed. As they
do this, it needs to be with the understanding that the methods are constantly changing and the
estimation methods will have to evolve too. New parameters are needed, and more will be
discovered and evolve over time.

SWAP Study Final Release, 3 May 2019 S128

https://resources.sei.cmu.edu/asset_files/Brochure/2017_015_001_506361.pdf

	2019-8-2-1_DIB_TEN_COMMANDMENTS_OF_SOFTWARE
	2019-8-2-2_DIB_METRICS_FOR_SOFTWARE_DEVELOPMENT
	2019-8-2-3_DIB_DOS_AND_DONTS_FOR_SOFTWARE
	2019-8-2-4_DIB_GUIDE_DETECTING_AGILE_BS
	2019-8-2-5_DIB_IS_YOUR_DEVELOPMENT_ENVIRONMENT_HOLDING_YOU_BACK
	2019-8-2-6_DIB_IS_YOUR_COMPUTE_ENVIRONMENT_HOLDING_YOU_BACK
	2019-8-2-7_DIB_SWAP_PROGRAM_VISITS_QUESTIONS_AND_OBSERVATIONS
	2019-8-2-8_DIB_HOW_TO_JUSTIFY_YOUR_BUDGET_WHEN_DOING_DEVSECOPS

